Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  7480051

Regulating plant physiology with organic electronics
Wednesday, 2017/05/03 | 09:41:11

David J. Poxson, Michal Karady, Roger Gabrielsson, Aziz Y. Alkattan, Anna Gustavsson, Siamsa M. Doyle, Stéphanie Robert, Karin Ljung, Markus Grebe, Daniel T. Simon, and Magnus Berggren

Significance

Hormones play a crucial role in the coordination of the physiological processes within and between the cells and tissues of plants. However, due to a lack of capable technologies, direct and dynamic interactions with plants’ hormone-signaling systems remains limited. Here, we demonstrate the use of an organic electronic device—the organic electronic ion pump—to deliver the plant hormone auxin to the living root tissues of Arabidopsis thaliana seedlings, inducing differential concentration gradients and modulating plant physiology. Electronically regulated transport of aromatic structures such as auxin in an organic electronic device was achieved by synthesis of a previously unidentified class of dendritic polyelectrolyte. Such bioelectronic technology opens the door for precise, electronically mediated control of a plant’s growth and development.

Abstract

The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

 

See: http://www.pnas.org/content/114/18/4597.abstract.html?etoc

PNAS May 2 1017; vol.114; no.18: 4597–4602

 

Figure 1: De novo design of an OEIP delivering IAA in vitro. Schematic diagrams of (A) OEIP device materials and geometries and (B) conceptualization of the cationic dendrolyte membrane. Anionic species such as IAA are selectively transported and migrate through the ion conducting channel in proportion to the applied potential gradient. (C) Photograph of the fully fabricated OEIP device. (D) Dendritic polyglycerol-based polyelectrolyte system (green) showing cross-linkages (black) and terminal groups (blue) with positive charge group (red). (E) OEIP mounted to a motorized micromanipulator and Arabidopsis seedlings positioned vertically on agar-growth plates. (F) OEIP positioned in proximity to the seedling root apical meristem (AM) and elongation zone (EZ). (G) OEIP delivery tip and root cross-section shown submerged in the agar-growth gel. Electrical current source, voltage meter (V), and electrode arrangement illustrated. Delivery of IAA is pictured as a diffusive concentration gradient from the OEIP delivery tip through the agar gel and exogenous to the root tissue.

Back      Print      View: 573

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD