Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  59
 Total visitors :  7672392

Strategies for eQTL mapping in allopolyploid organisms
Wednesday, 2020/08/19 | 08:36:33

Kang-Hsien FanKatrien M. Devos & Paul Schliekelman 

Theoretical and Applied Genetics August 2020; vol. 133:2477–2497

Key message

 

This study uses simulations to explore statistical power and false-positive rates for eQTL mapping in allopolyploid organisms and provides guidelines to apply eQTL mapping in these organisms.

 

Abstract

 

In recent years, RNA-seq has become the dominant technology for eQTL studies. However, most work has been in diploid organisms. Many species of economic and environmental importance are polyploid, and approaches for eQTL mapping in polyploids are not well developed. High similarity between duplicated genes in polyploids will cause misassignment of sequence reads and may cause false-positive results and/or lack of power to detect eQTL. In this paper, we first explore the similarity of homoeologous transcripts in polyploid organisms. We find that 5–20% of genes (varying with organism) in important agricultural plants such as wheat, soybean, and switchgrass are not sufficiently diverged between duplicated genomes to allow unambiguous assignment of reads. Second, we examine the impact of misassigned reads on eQTL mapping and show that both false-positive and false-negative rates can be greatly inflated. Third, we compare four strategies for dealing with ambiguous reads: (1) dividing ambiguous reads evenly between homoeologous transcripts, (2) assigning them proportionally, (3) using all reads for all genes, and (4) discarding ambiguous reads. We find that the strategy of discarding ambiguous reads gives the best balance of false-positive and false-negative rates for most genes. However, for genes that are very similar between genomes, using all reads is the only choice. This leads to reduced power, but false-positive rates will be maintained. We also discuss QTL mapping in polyploids using allele-specific expression (ASE) and show how the proportion of ASE-informative reads varies according to the divergence between homoeologous genes.

 

See https://link.springer.com/article/10.1007/s00122-020-03612-1

Back      Print      View: 253

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD