Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  48
 Total visitors :  7667381

The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts
Tuesday, 2021/08/10 | 07:52:42

Tao WanZhiming LiuQingfeng Wang

Nature Communications volume 12, Article number: 4247 (2021); Published12 July 2021

ABSTRACT

The gymnosperm Welwitschia mirabilis belongs to the ancient, enigmatic gnetophyte lineage. It is a unique desert plant with extreme longevity and two ever-elongating leaves. We present a chromosome-level assembly of its genome (6.8 Gb/1 C) together with methylome and transcriptome data to explore its astonishing biology. We also present a refined, high-quality assembly of Gnetum montanum to enhance our understanding of gnetophyte genome evolution. The Welwitschia genome has been shaped by a lineage-specific ancient, whole genome duplication (~86 million years ago) and more recently (1-2 million years) by bursts of retrotransposon activity. High levels of cytosine methylation (particularly at CHH motifs) are associated with retrotransposons, whilst long-term deamination has resulted in an exceptionally GC-poor genome. Changes in copy number and/or expression of gene families and transcription factors (e.g. R2R3MYBSAUR) controlling cell growth, differentiation and metabolism underpin the plant’s longevity and tolerance to temperature, nutrient and water stress.

 

See: https://www.nature.com/articles/s41467-021-24528-4

 

Fig. 2: Genome evolutionary history of Welwitschia.

a A circos plot showing the inter-genomic collinearity analysis between the Welwitschia and Gnetum genomes. From outside to inside, each track shows (1) one-to-one orthologous collinear regions between the two genomes with colors showing their orthologs on different chromosomes in the other species; (2) the chromosomes of Welwitschia in black and Gnetum in colors; (3) the coverage of tandem repeats in a 5 Mbp window with green and red bars showing above or below the mean coverage of tandem repeats across the genome for Welwitschia (standard deviation in gray), respectively; (4) the coverage of long terminal repeats (LTRs) in a 5 Mbp window with light green and light red bars showing above or below the mean coverage of tandem repeats across the genome (standard deviation in gray), respectively; and (5) paralogous collinear regions in the Welwitschia genome with at least five anchor pairs. The bands denote collinear regions where one region in Gnetum corresponds to two orthologous regions in Welwitschia. b Two examples illustrating one segment in Gnetum corresponding to two paralogous segments in Welwitschia. Genes in light gray are non-homologs. Genes with the same colors are homologs and homologous genes are connected with dark gray bands when the two segments are alongside. c Distributions of synonymous substitutions per synonymous site (KS) for the whole paranome of Welwitschia (light gray histogram and dark gray line). The y axis on the left shows the number of retained duplicates and there is a small peak at KS of 1, which represents a WGD event. The y axis on the right shows the orthologue density between the two species. For one-to-one orthologs between Welwitschia – Gnetum and Welwitschia – Ginkgo (color-filled curves of kernel-density estimates) the peaks represent species divergence events and KS values correspond with the degree of orthologue divergence. The KS values for anchor pairs from collinear regions are indicated in orange (left y axis). The pale gray rectangle highlights the KS regions in which the paralogous genes were used for absolute dating. d Estimation of LTR activity showing a recent burst in Welwitschia less than two million years ago (mya). e In this recent burst of activity, the majority of elements responsible were both autonomous (13,893 copies of Ty1-copia and 9,999 copies of Ty3-gypsy) and non-autonomous LTRs (10,589 copies), with peaks of activity <5 mya. f Heuristic neighbor-joining trees constructed from 3,298 full-length Ty3-gypsy and 2,224 of Ty1-copia sequences from Welwitschia, Gnetum, Ginkgo, and Amborella. There were many more complete elements identified in Ginkgo (4,237) than in the other species, elements that were likely to have been derived from a peak of activity about 15 mya. A few clades of Welwitschia-derived Ty3-gypsy (131 copies) probably arose from the recent activity at ~2 mya (see e). Source data underlying Fig. d–f are provided as a Source Data file.

Back      Print      View: 215

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD