Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  62
 Total visitors :  7671937

The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita
Tuesday, 2020/09/15 | 09:00:12

Xiuli MengGui XiaoMary Jeanie Telebanco-YanoriaPaolo Miguel SiazonJonas PadillaRina OpulenciaJoseph BigirimanaGeorges HabarugiraJun WuMingyang LiBaohua WangGuo-Dong LuBo Zhou

 

Rice (NY) 2020 Mar 13; 13(1):19.  doi: 10.1186/s12284-020-00377-5.

 

Background: Rice blast is generally considered the most devastating rice disease worldwide. The development of resistant varieties has been proven to be the most economical strategy to control the disease. A cluster of resistant (R) genes on rice chromosome 12 including Pita, Pita2 and Ptr has been studies for decades. However, the relationship between these R genes has not been well established.

 

Results: In this study, we compared the resistance spectra controlled by Pita2 and Pita by testing their monogenic lines (MLs) in four hotspots found in the Philippines and Burundi from 2014 to 2018. The reaction patterns were distinct in two countries and that Pita2-mediated field resistance was relatively prevalent. Pathogenicity tests using 328 single-spore isolates in greenhouse further verified that IRBLta2-Re for Pita2 conferred a relatively broader spectrum resistance than those of Pita. Rough and fine mapping of Pita2 were conducted using F2 and F3 populations derived from IRBLta2-Re [CO] and CO 39 consisting of 4344 progeny to delimit Pita2 in a genomic interval flanked by two markers 12 g18530 and 12 g18920 proximal to the centromere of chromosome 12. Alignment of the markers to the genomic sequence of IR64, which harbors Pita2 verified by genetic analysis, approximately delimited the candidate gene(s) within 313-kb genomic fragment. The two Pita2 suppressive mutants that contain mutations within Pita2 were verified and identified. Comparative sequence analysis in these two mutants further identified that each individual allele contains a single nucleotide substitution at a different position resulting in nonsense and missense mutations in the protein product of LOC_Os12g18729. On the contrary, no sequence mutation was detected in other candidate genes, indicating that mutations in LOC_Os12g18729 were responsible for the loss of function of Pita2. Pita2 encodes a novel R protein unique from Pita, which is exactly identical to the previously cloned Ptr. Moreover, based on the resistance gene analysis of rice varieties and mutants containing Pita, it was found that Pita2 rather than Pita was responsible for the specificity to some differential isolates with AvrPita. The diagnosis and survey of Pita2 in IRRI released varieties showed relatively low frequency, implying a high value of its application for breeding resistant varieties against rice blast via marker assisted selection.

 

Conclusion: Our study clarified the relationship between Pita, Pita2 and Ptr. Pita2 is identical to Ptr and distinct from Pita in both sequence and chromosomal location although Pita2 and Pita are genetically linked to each other. The loss of function of Pita2 but not Pita eliminate the specificity to some AvrPita containing isolates, however, the mechanism underlying the recognition between Pita2/Pita and AvrPita remains elusive.

 

See https://pubmed.ncbi.nlm.nih.gov/32170462/

Figure 1: Mapping and identification of Pita2.aPita2 was mapped between 12 g18120 and RM1337 on chromosome 12. bPita2 was fine mapped to 270 kb flanked by 12 g18530 and 12 g18920. The molecular markers and number of recombinants were listed above and underneath the thick line, respectively. The population size used for mapping is listed on the right. c Nine candidate genes of Pita2 were identified in the genomic region of IR64 delimited by markers of 12 g18530 and 12 g18920. The transcriptional direction was indicated by arrows. d Diagram of Pita2. Two mutants of IR64 were indicated by triangle. The position of amino acid residue corresponding to the single nucleotide mutation was indicated. Exons were showed in filled boxes. e Reaction pattern of different varieties to 9475-1-3. The figures was not drawn in scale

Back      Print      View: 281

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD