Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  8
 Total visitors :  7515082

The miR172c-NNC1 module modulates root plastic development in response to salt in soybean
Sunday, 2017/12/10 | 05:55:50

Zulfiqar Ali Sahito, Lixiang Wang, Zhengxi Sun, Qiqi Yan, Xingke Zhang, Qiong Jiang, Ihteram Ullah, Yiping Tong and Xia Li

BMC Plant Biology; 1 December 2017; 17:229

Abstract

Background

Plant roots are highly plastic to high salinity. However, the molecular mechanism by which root developmental plasticity is regulated remains largely unknown. Previously we reported that miR172c-NNC1 module plays a key role in soybean-rhizobial symbiosis. The fact that the miR172c promoter contains several stress-related cis elements indicates that miR172c may have a role in root response to abiotic stress.

Results

Here we showed that miR172c is greatly induced by salt stress in soybean. Overexpression of miR172c and knockdown of miR172c activity resulted in substantially increased and reduced root sensitivity to salt stress, respectively. Furthermore, we show that the target gene NNC1 (Nodule Number Control 1) of miR172c was downregulated by salt stress. The transgenic roots overexpressing or knocking down NNC1 expression also exhibited the altered root sensitivity to salt stress.

Conclusion

The study reveals the crucial role of miR172c-NNC1 module in root stress tolerance to salt stress in soybean.

 

See: https://bmcplantbiol.biomedcentral.com/articles/10.1186/s12870-017-1161-9

 

Figure 1: Analysis of the miR172c promoter and miR172c expression. a Computational analysis of the regulatory cis elements of the miR172c promoter. The promoter sequence (2000 bp) of upstream of pre-miR172c (www.phytozome.net/) was chosen for multiple cis-element analysis using an online software at http://www.dna.affrc.go.jp/place/. b qRT-PCR analysis of expression of miR172c in roots. Seven day-old seedlings were treated with 75 mM NaCl, and roots were harvested at 0, 1, 3, 6, 12, and 24 h after treatment. miR1515a was used to normalize transcript abundance. Data are mean ± SD from three biological repeats. Letters indicate significant differences from the empty vector controls according to the Student’s Newman-Kuels test (P < 0.05). c Histochemical analysis of the expression of miR172c. GUS staining was performed using the transgenic roots expression promiR172c::GUS treated with or without 75 mM NaCl for 24 h. Two weeks-old composite plants were used to conduct the experiments. Bars in (c) =1 cm.

Back      Print      View: 480

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD