Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  7517636

Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis
Friday, 2017/03/10 | 07:38:07

Haiwen Zhang, Fu-Geng Zhao, Ren-Jie Tang, Yuexuan Yu, Jiali Song, Yuan Wang, Legong Li, and Sheng Luan

Significance

Turgor pressure is the driving force for cell growth in plants, and the large central vacuole provides the major space for turgor regulation. However, the molecular identity and function of many transporters that control water and solute fluxes in and out of vacuoles remain unknown. We report here that two Multidrug and Toxic Compound Extrusion (MATE)-type transporters show previously unrecognized function as chloride channels essential for turgor regulation in Arabidopsis. The MATE transporters are highly conserved from bacteria, fungi, plants, to animals, and widely accepted as transporters of organic compounds. This study, showing some MATE transporters as chloride channels, thus breaks the old dogma on the functional definition of this large family of transporters.

Abstract

The central vacuole in a plant cell occupies the majority of the cellular volume and plays a key role in turgor regulation. The vacuolar membrane (tonoplast) contains a large number of transporters that mediate fluxes of solutes and water, thereby adjusting cell turgor in response to developmental and environmental signals. We report that two tonoplast Detoxification efflux carrier (DTX)/Multidrug and Toxic Compound Extrusion (MATE) transporters, DTX33 and DTX35, function as chloride channels essential for turgor regulation in Arabidopsis. Ectopic expression of each transporter in Nicotiana benthamiana mesophyll cells elicited a large voltage-dependent inward chloride current across the tonoplast, showing that DTX33 and DTX35 each constitute a functional channel. Both channels are highly expressed in Arabidopsis tissues, including root hairs and guard cells that experience rapid turgor changes during root-hair elongation and stomatal movements. Disruption of these two genes, either in single or double mutants, resulted in shorter root hairs and smaller stomatal aperture, with double mutants showing more severe defects, suggesting that these two channels function additively to facilitate anion influx into the vacuole during cell expansion. In addition, dtx35 single mutant showed lower fertility as a result of a defect in pollen-tube growth. Indeed, patch-clamp recording of isolated vacuoles indicated that the inward chloride channel activity across the tonoplast was impaired in the double mutant. Because MATE proteins are widely known transporters of organic compounds, finding MATE members as chloride channels expands the functional definition of this large family of transporters.

 

See http://www.pnas.org/content/114/10/E2036.abstract.html?etoc

PNAS March 7 2017; vol.114; no.10: E2036–E2045

 

Fig. 1.

DTX33 and DTX35 are both tonoplast proteins. (A) Arabidopsis suspension culture cells were transiently transformed with 35S-DTX33::GFP, 35S-DTX35::GFP, or 35S-TPK1::GFP. (Left) GFP signals (green), (Center) bight field image of the same cell (DIC), and (Right) an overlay (GFP and DIC) of the same sample. (Scale bar: 5 μM.) (B) Transgenic Arabidopsis plants expressing 35S:DTX33-GFP and 35S:DTX35-GFP. (Left) GFP signals (green), (Center) the plasma membrane stained with FM4-64 (red), and (Right) an overlay (green and red) from the same sample. (Scale bar: 20 μM.) (C) Vacuoles released from Arabidopsis mesophyll protoplasts that were transiently transformed with 35S-DTX33::GFP and 35S-DTX35::GFP. (Scale bar: 5 μM.)

Back      Print      View: 455

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD