Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  51
 Total visitors :  7668257

Warm nights disrupt transcriptome rhythms in field-grown rice panicles
Thursday, 2021/06/24 | 07:01:06

Jigar S. Desai, Lovely Mae F. Lawas, Ashlee M. Valente, Adam R. Leman, Dmitry O. Grinevich, S. V. Krishna Jagadish, and Colleen J. Doherty

PNAS June 22, 2021 118 (25) e2025899118

Significance

The effects of warmer nighttime temperatures (WNT) on crops are one poorly understood dimension of climate change. WNT result from the asymmetrical increase in nighttime versus daytime temperatures. In rice, WNT reduce grain yield and quality. WNT reduce the amplitude of daily temperature cycles plants use to set their circadian clock. Therefore, we examined how WNT affect the timing of molecular activities. In field-grown plants, WNT alter the daily pattern of the transcriptome. Genes with strong rhythmic expression and those under circadian control are affected most by WNT. Many candidate regulators of the disrupted genes are circadian clock associated, emphasizing the altered timing under WNT. The pathways and mechanisms identified can assist efforts to identify lines tolerant to WNT.

Abstract

In rice, a small increase in nighttime temperature reduces grain yield and quality. How warm nighttime temperatures (WNT) produce these detrimental effects is not well understood, especially in field conditions where the typical day-to-night temperature fluctuation exceeds the mild increase in nighttime temperature. We observed genome-wide disruption of gene expression timing during the reproductive phase in field-grown rice panicles acclimated to 2 to 3 °C WNT. Transcripts previously identified as rhythmically expressed with a 24-h period and circadian-regulated transcripts were more sensitive to WNT than were nonrhythmic transcripts. The system-wide perturbations in transcript levels suggest that WNT disrupt the tight temporal coordination between internal molecular events and the environment, resulting in reduced productivity. We identified transcriptional regulators whose predicted targets are enriched for sensitivity to WNT. The affected transcripts and candidate regulators identified through our network analysis explain molecular mechanisms driving sensitivity to WNT and identify candidates that can be targeted to enhance tolerance to WNT.

 

See: https://www.pnas.org/content/118/25/e2025899118

 

Figure 2; DEGs in response to WNT. DEGs identified between WNT and NNT at each time point (false discovery rate < 0.05 and logFC > 0.5). Time points indicate sample time in hours after sunrise (dawn). Bargraphs of DEGs (A) up-regulated and (B) down-regulated at each time point. The Eigengene representations of all (C) up-regulated and (D) down-regulated DEGs in WNT (red) and NNT (blue). White/black bar indicates day/night period, respectively. The red bar indicates when WNT plants were exposed to WNT. An asterisk indicates that the difference between the WNT and NNT eigengenes is significant (P value < 1 × 10−10) based on a one-sided t test for the direction tested (WNT expression is higher for up-regulated genes and lower for down-regulated genes). Error bars indicate ± SE (n = 4).

Back      Print      View: 213

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD