Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  11
 Total visitors :  4972277

Chromatin phosphoproteomics unravels a function for AT-hook motif nuclear localized protein AHL13 in PAMP-triggered immunity
Tuesday, 2021/01/26 | 08:27:03

Naganand Rayapuram, Mai Jarad, Hanna M. Alhoraibi, Jean Bigeard, Aala A. Abulfaraj, Ronny Völz, Kiruthiga Gayathri Mariappan, Marilia Almeida-Trapp, Maria Schlöffel, Emmanuelle Lastrucci, Ludovic Bonhomme, Andrea A. Gust, Axel Mithöfer, Stefan T. Arold, Delphine Pflieger, and Heribert Hirt


PNAS January 19, 2021 118 (3) e2004670118.



Mitogen-activated protein kinases (MAPKs) function in all eukaryotes in signaling extracellular stimuli to intracellular responses and ultimately link them to chromatin events by targeting transcription factors and chromatin remodeling complexes. In plants, MAPKs play crucial roles in immunity, development, and stress responses, but so far no attempts have been made to identify phosphorylation of chromatin-associated proteins. By using a phosphoproteomic approach on MAPK mutants, we identified a number of chromatin-associated MAPK substrates and characterize an AT-hook motif containing nuclear localized (AHL) DNA-binding protein 13 in plant immunity and demonstrate that phosphorylation regulates AHL13 protein stability and, in turn, its function in response to pathogens.


In many eukaryotic systems during immune responses, mitogen-activated protein kinases (MAPKs) link cytoplasmic signaling to chromatin events by targeting transcription factors, chromatin remodeling complexes, and the RNA polymerase machinery. So far, knowledge on these events is scarce in plants and no attempts have been made to focus on phosphorylation events of chromatin-associated proteins. Here we carried out chromatin phosphoproteomics upon elicitor-induced activation of Arabidopsis. The events in WT were compared with those in mpk3mpk4, and mpk6 mutant plants to decipher specific MAPK targets. Our study highlights distinct signaling networks involving MPK3, MPK4, and MPK6 in chromatin organization and modification, as well as in RNA transcription and processing. Among the chromatin targets, we characterized the AT-hook motif containing nuclear localized (AHL) DNA-binding protein AHL13 as a substrate of immune MAPKs. AHL13 knockout mutant plants are compromised in pathogen-associated molecular pattern (PAMP)-induced reactive oxygen species production, expression of defense genes, and PAMP-triggered immunity. Transcriptome analysis revealed that AHL13 regulates key factors of jasmonic acid biosynthesis and signaling and affects immunity toward Pseudomonas syringae and Botrytis cinerea pathogens. Mutational analysis of the phosphorylation sites of AHL13 demonstrated that phosphorylation regulates AHL13 protein stability and thereby its immune functions.


See: https://www.pnas.org/content/118/3/e2004670118


Figure 1: Phosphoproteomics experimental workflow and data analysis. (A) Schematic representation of the phosphoproteomics experimental workflow and data analysis for the identification of MAPK substrates. Phosphopeptides were enriched using IMAC from WT plants and mpk3mpk4, and mpk6 mutants treated with and without flg22 and analyzed by LC-MS/MS. Database searches were carried out using the program Mascot and phosphosite localization was ascertained using FragMixer. Relative quantification was carried out using MassChroQ, followed by statistical analysis of quantitative data to highlight sequences whose abundance was significantly modulated. The list of identified phosphopeptides was subjected to motif analysis using motif-x. (B) Number of phosphorylation sites per peptide. (C) Distribution of phosphorylated amino acids. (D) Motifs enriched by motif-x. (E) Principal component analysis of the identified phosphopeptides across the eight conditions. (F) Principal component analysis of a few candidate proteins are highlighted. (G) Venn diagram showing the overlap of candidate proteins identified in this study with other relevant studies (343537).

Back      Print      View: 34

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD