Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  4094379

Comparative Physiological Analysis of METHYL JASMONATE in the Delay of Postharvest Physiological Deterioration and Cell Oxidative Damage in Cassava.
Tuesday, 2019/09/17 | 08:14:45

Liu GLi BLi XWei YLiu DShi H.

Biomolecules. 2019 Sep 5;9(9). pii: E451. doi: 10.3390/biom9090451.

Abstract

The short postharvest life of cassava is mainly due to its rapid postharvest physiological deterioration (PPD) and cell oxidative damage, however, how to effectively control this remains elusive. In this study, South China 5 cassava slices were sprayed with water and methyl jasmonate (MeJA) to study the effects of MeJA on reactive oxygen species, antioxidant enzymes, quality, endogenous hormone levels, and melatonin biosynthesis genes. We found that exogenous MeJA could delay the deterioration rate for at least 36 h and alleviate cell oxidative damage through activation of superoxide dismutase, catalase, and peroxidase. Moreover, MeJA increased the concentrations of melatonin and gibberellin during PPD, which had a significant effect on regulating PPD. Notably, exogenous MeJA had a significant effect on maintaining cassava quality, as evidenced by increased ascorbic acid content and carotenoid content. Taken together, MeJA treatment is an effective and promising way to maintain a long postharvest life, alleviate cell oxidative damage, and regulate storage quality in cassava.

 

See https://www.mdpi.com/2218-273X/9/9/451/htm

Figure 3: The modulation of MeJA treatment on antioxidant enzyme activities in cassava tuberous roots during PPD. Related activities of catalase (CAT) (A), peroxidase (POD) (B), and superoxide dismutase (SOD) (C) in cassava tuberous roots. Data are means ± SD calculated from at least four biological replicate samples. Asterisk symbols (*) indicate significant differences according to Duncan’s multiple range test at p < 0.05 at the same time.

Back      Print      View: 39

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD