Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  9
 Total visitors :  7456391

Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana
Thursday, 2019/03/21 | 08:08:24

Ancilla Neu, Emily Eilbert, Lisa Y. Asseck, Daniel Slane, Agnes Henschen, Kai Wang, Patrick Bürgel, Melanie Hildebrandt, Thomas J. Musielak, Martina Kolb, Wolfgang Lukowitz, Christopher Grefen, and Martin Bayer

PNAS March 19, 2019 116 (12) 5795-5804

PLANT BIOLOGY

 

Significance

 

In flowering plants, membrane-associated kinases of the BRASSINOSTEROID SIGNALING KINASE (BSK) family are ubiquitous, receptor-associated signaling partners in various receptor kinase pathways, where they function in signaling relay. The Brassicaceae-specific BSK family member SHORT SUSPENSOR (SSP), however, acts as a patterning cue in the zygote, initiating the apical-basal patterning process in a signal-like manner. The SSP protein has lost a regulatory, intramolecular interaction and activates the MAPKKK YODA signaling pathway constitutively, in principle, enabling the protein to initiate embryonic patterning without receptor activation. We further show that the BSK family members BSK1 and BSK2, both conserved in flowering plants, activate the same signaling pathway in parallel to SSP and might constitute remnants of an older, canonical signaling pathway still active in Arabidopsis.

 

Abstract

 

In flowering plants, the asymmetrical division of the zygote is the first hallmark of apical-basal polarity of the embryo and is controlled by a MAP kinase pathway that includes the MAPKKK YODA (YDA). In Arabidopsis, YDA is activated by the membrane-associated pseudokinase SHORT SUSPENSOR (SSP) through an unusual parent-of-origin effect: SSP transcripts accumulate specifically in sperm cells but are translationally silent. Only after fertilization is SSP protein transiently produced in the zygote, presumably from paternally inherited transcripts. SSP is a recently diverged, Brassicaceae-specific member of the BRASSINOSTEROID SIGNALING KINASE (BSK) family. BSK proteins typically play broadly overlapping roles as receptor-associated signaling partners in various receptor kinase pathways involved in growth and innate immunity. This raises two questions: How did a protein with generic function involved in signal relay acquire the property of a signal-like patterning cue, and how is the early patterning process activated in plants outside the Brassicaceae family, where SSP orthologs are absent? Here, we show that Arabidopsis BSK1 and BSK2, two close paralogs of SSP that are conserved in flowering plants, are involved in several YDA-dependent signaling events, including embryogenesis. However, the contribution of SSP to YDA activation in the early embryo does not overlap with the contributions of BSK1 and BSK2. The loss of an intramolecular regulatory interaction enables SSP to constitutively activate the YDA signaling pathway, and thus initiates apical-basal patterning as soon as SSP protein is translated after fertilization and without the necessity of invoking canonical receptor activation.

 

See https://www.pnas.org/content/116/12/5795

Figure 1: Functional importance of BSK family kinases in early embryogenesis. (A) Nomarsky images of transition-stage embryos in whole-mount cleared seeds of wild-type Col-0, ydabsk1-2bsk2-2, and ssp-2 single mutants, as well as bsk1 bsk2 double mutants (b1 b2) and bsk1 bsk2 ssp triple mutants (b1 b2 ssp). (Scale bars: 10 μm.) (B) Box plot diagram of suspensor length measurements for >100 embryos. The total number of analyzed embryos is depicted above the x axis. The box plot diagram shows the median as center lines, and the 25th and 75th percentiles are indicated by box limits. Whiskers show 1.5× interquartile distance. Outliers are represented by dots. Statistically significant differences from wild type were determined by the Mann–Whitney U test (**P < 0.001; *P < 0.01). Statistically significant differences in other pairwise comparisons are indicated by brackets. (C) Nomarsky images of embryos at the one-cell stage in whole-mount cleared seeds. The average sizes of the apical (yellow) and basal (green) daughter cells with the SD and number of analyzed embryos are given below the image. Furthermore, significant differences in pairwise comparisons to the indicated reference (Ref) determined by the Mann–Whitney U test (*P < 0.001) are indicated below the image (gray). Apical cells are false-colored in yellow, and basal cells are shown in green. (Scale bars: 10 μm.)

Back      Print      View: 353

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD