Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  7
 Total visitors :  4438106

Enhanced salt tolerance of rhizobia-inoculated soybean correlates with decreased phosphorylation of the transcription factor GmMYB183 and altered flavonoid biosynthesis.
Sunday, 2019/10/13 | 04:31:05

Pi EXu JLi HFan WZhu CZhang TJiang JHe LLu HWang HPoovaiah BWDu L.

Mol Cell Proteomics. 2019 Aug 28. pii: mcp.RA119.001704. doi: 10.1074/mcp.RA119.001704.


Soybean (Glycine max (L.) Merrill) is an important component of the human diet and animal feed, but the soybean production is limited by abiotic stresses especially salinity.  We recently found that rhizobia inoculation enhances soybean tolerance to salt stress, but the underlying mechanisms are unaddressed.  Here, we used quantitative phosphoproteomic and metabonomic approaches to identify changes in phosphoproteins and metabolites in soybean roots treated with rhizobia inoculation and salt.  Results revealed differential regulation of 800 phosphopeptides, at least 32 of these phosphoproteins or their homologous were reported be involved in flavonoid synthesis or trafficking, and 27 out of 32 are transcription factors.  We surveyed the functional impacts of all these 27 transcription factors by expressing their phospho-mimetic/ablative mutants in the roots of composite soybean plants and found that phosphorylation of GmMYB183 could affect the salt tolerance of the transgenic roots.  Using ChIP and EMSA, we found GmMYB183 binds to the promoter of the soybean GmCYP81E11 gene encoding for a Cytochrome P450 monooxygenase contributes to the accumulation of ononin, a monohydroxy B-ring flavonoid negatively regulate soybean tolerance to salinity. Phosphorylation of GmMYB183 was inhibited by rhizobia inoculation, overexpression of GmMYB183 enhanced the expression of GmCYP81E11 and rendered salt sensitivity to the transgenic roots. Plants deficient in GmMYB183 function are more tolerant to salt stress as compared to wild-type soybean plants which correlated with the transcriptional induction of GmCYP81E11 and the subsequent accumulation of ononin.  Our findings provide molecular insights into how rhizobia enhance salt tolerance of soybean plants.


Published under license by The American Society for Biochemistry and Molecular Biology, Inc.


See: https://www.mcponline.org/content/early/2019/08/28/mcp.RA119.001704.long


Figure 1: GmMYB183 Binds to a MYB-Specific Cis-Element Present in the Promoter of GmCYP81E11. (A) Distribution of MYB binding motifs (G/A/T)(G/A/T)T(C/A)(A/G)(A/G)(G/T)(T/A) in the promoter of GmCYP81E11. Position of the probe (underlined sequence) used for ChIP-based binding assay is shown below the gene. Position Weight Matrix of MYB binding motifs was curated in the JASPAR database (http://jaspar.genereg.net/cgi-bin/jaspar_db.pl?rm=browse&db=core&tax_group=plants). (B) and (C), ChIP-qPCR assays indicating that GmMYB183 binds to the promoter sections containing the MYB-binding motifs in vivo. The empty vector was used as a negative control (NC). An asterisk indicates a significant difference (P ≤ 0.05) to the NC according to Student‘s t test. FC means fold change. (D) and (E), EMSA assays showed that GmMYB183 specially binds to the GmCYP81E11-P1 fragment from the GmCYP81E11 promoter (D), and phosphorylation at S61 of GmMYB183 enhances this interaction (E). GmCYP81E11-P1 (ttttATGTATTAGTGATTAAGTTTAATAACGTGA) or a mutated version with its ATTAAGTT core sequence changed to ATAAAGTT (GmCYP81E11-P1M) was labeled as a probe, and 200 or 500 folds of unlabeled double strand GmCYP81E115- P1 fragment was set as the competitor. (F) and (G) The transcription levels of GmMYB183 (F) and GmCYP81E11 (G) in soybean transgenic roots expressing empty vector (EV), GmMYB183-overexpression (GmMYB183-OE) and RNAi (GmMYB183-KD) constructs, respectively. Data presented are mean ± SE (n=3). (H) Transcription of GmMYB183 in soybean roots treated with R(-)Na(-), R(+)Na(-), R(- )Na(+) and R(+)Na(+). Data represent mean values ± SE, each sample was analyzed with three biological replicates. An asterisk indicates a significant difference (P ≤ 0.05, Student‘s t-test) between treatment [R(+)Na(-), R(-)Na(+) and R(+)Na(+)] and the control [R(-)Na(-)].

Back      Print      View: 77

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD