Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  3
 Total visitors :  6143948

Fine mapping and analysis of candidate genes for qFT7.1, a major quantitative trait locus controlling flowering time in Brassica rapa L.
Sunday, 2022/07/24 | 07:52:14

Gaoyang QuYue GaoXian WangWei FuYunxia SunXu GaoWei WangChunming HaoHui Feng & Yugang Wang

Theoretical and Applied Genetics; July 2022; vol. 135: 2233–2246

Figure: Brassica rapa flowering

Key message

qFT7.1, a major QTL for flowering time in Brassica rapa was fine-mapped to chromosome A07 in a 56.4-kb interval, in which the most likely candidate gene is BraA07g018240.3C.


In Brassica rapa, flowering time (FT) is an important agronomic trait that affects the yield, quality, and adaption. FT is a complicated trait that is regulated by many genes and is affected greatly by the environment. In this study, a chromosome segment substitution line (CSSL), CSSL16, was selected that showed later flowering than the recurrent parent, a rapid-cycling inbred line of B. rapa (RcBr). Using Bulked Segregant RNA sequencing, we identified a late flowering quantitative trait locus (QTL), designated as qFT7.1, on chromosome A07, based on a secondary-F2 population derived from the cross between CSSL16 and RcBr. qFT7.1 was further validated by conventional QTL mapping. This QTL explained 39.9% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 56.4-kb interval using recombinant analysis. Expression analysis suggested that BraA07g018240.3C, which is homologous to ATC (encoding Arabidopsis thaliana CENTRORADIALIS homologue), a gene for delayed flowering in Arabidopsis, as the most promising candidate gene. Sequence analysis demonstrated that two synonymous mutations existed in the coding region and numerous bases replacements existed in promoter region between BraA07g018240.3C from CSSL16 and RcBr. The results will increase our knowledge related to the molecular mechanism of late flowering in B. rapa and lays a solid foundation for the breeding of late bolting B. rapa.


See https://link.springer.com/article/10.1007/s00122-022-04108-w


Back      Print      View: 37

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD