Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7454548

Fine mapping and candidate gene screening of the downy mildew resistance gene RPF1 in Spinach
Saturday, 2018/12/15 | 06:17:39

Hongbing She, Wei Qian, Helong Zhang, Zhiyuan Liu, Xiaowu Wang, Jian Wu, Chunda Feng, James C. Correll, Zhaosheng Xu

Theoretical and Applied Genetics; December 2018, Volume 131, Issue 12, pp 2529–2541

Key message

A SLAF-BSA approach was used to locate the RPF1 locus. The three most likely candidate genes were identified which provide a basic for cloning the resistance gene at the RPF1 locus.

Abstract

Spinach downy mildew is a globally devastating oomycete disease. The use of downy mildew resistance genes constitutes the most effective approach for disease management. Hence, the objective of the present study was to fine map the first-reported resistance locus RPF1. The resistance allele at this resistance locus was effective against races 1–7, 9, 11, 13, and 15 of Peronospora farinosa f. sp. spinaciae (P. effusa). The approach fine mapped RPF1 using specific-locus amplified fragment sequencing (SLAF-Seq) technology combined with bulked segregant analysis. A 1.72 Mb region localized on chromosome 3 was found to contain RPF1 based on association analysis. After screening recombinants with the SLAF markers within the region, the region was narrowed down to 0.89 Mb. Within this region, 14 R genes were identified based on the annotation information. To identify the genes involved in resistance, resequencing of two resistant inbred lines (12S2 and 12S3) and three susceptible inbred lines (12S1, 12S4, and 10S2) was performed. The three most likely candidate genes were identified via amino acid sequence analysis and conserved domain analysis between resistant and susceptible inbred lines. These included Spo12729, encoding a receptor-like protein, and Spo12784 and Spo12903, encoding a nucleotide-binding site and leucine-rich repeat domains. Additionally, based on the sequence variation in the three genes between the resistant and susceptible lines, molecular markers were developed for marker-assisted selection. The results could be valuable in cloning the RPF1 alleles and improving our understanding of the interaction between the host and pathogen.

 

See: https://link.springer.com/article/10.1007/s00122-018-3169-4

Back      Print      View: 351

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD