Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  3
 Total visitors :  4165505

GenBank is a reliable resource for 21st century biodiversity research
Saturday, 2019/11/16 | 11:21:12

Matthieu Leray, Nancy Knowlton, Shian-Lei Ho, Bryan N. Nguyen, and Ryuji J. Machida

PNAS November 5, 2019 116 (45) 22651-22656

Significance

As loss of biodiversity and ecosystem degradation become major concerns worldwide, scientists increasingly depend on DNA-based characterization of animal communities for monitoring and impact assessments. These analyses ultimately depend on the taxonomic reliability of genetic databases for taxonomic assignments. Concerns have been raised about the reliability of GenBank, the largest and most widely used genetic database. We show that, contrary to expectations, the proportion of mislabeled sequences in GenBank is surprisingly low. Major taxonomic errors are vanishingly small (0.01% at the class level, 0.05% at the order level), and likely <1% even at the genus level. These results show that GenBank is much more reliable for a range of applications, including studies of environmental change, than previously thought.

Abstract

Traditional methods of characterizing biodiversity are increasingly being supplemented and replaced by approaches based on DNA sequencing alone. These approaches commonly involve extraction and high-throughput sequencing of bulk samples from biologically complex communities or samples of environmental DNA (eDNA). In such cases, vouchers for individual organisms are rarely obtained, often unidentifiable, or unavailable. Thus, identifying these sequences typically relies on comparisons with sequences from genetic databases, particularly GenBank. While concerns have been raised about biases and inaccuracies in laboratory and analytical methods, comparatively little attention has been paid to the taxonomic reliability of GenBank itself. Here we analyze the metazoan mitochondrial sequences of GenBank using a combination of distance-based clustering and phylogenetic analysis. Because of their comparatively rapid evolutionary rates and consequent high taxonomic resolution, mitochondrial sequences represent an invaluable resource for the detection of the many small and often undescribed organisms that represent the bulk of animal diversity. We show that metazoan identifications in GenBank are surprisingly accurate, even at low taxonomic levels (likely <1% error rate at the genus level). This stands in contrast to previously voiced concerns based on limited analyses of particular groups and the fact that individual researchers currently submit annotated sequences to GenBank without significant external taxonomic validation. Our encouraging results suggest that the rapid uptake of DNA-based approaches is supported by a bioinformatic infrastructure capable of assessing both the losses to biodiversity caused by global change and the effectiveness of conservation efforts aimed at slowing or reversing these losses.

 

See https://www.pnas.org/content/116/45/22651

 

Figure 1: Percentage of sequences in multisequence clusters for 13 protein and 2 ribosomal RNA-coding metazoan mitochondrial encoded genes. Clustering was performed on sequences retrieved from the GenBank BLAST nucleotide database using VSEARCH.

Back      Print      View: 19

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD