Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  26
 Total visitors :  7455592

Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm
Sunday, 2019/08/04 | 05:15:37

Chelang’at Sitonik, L. M. Suresh, Yoseph Beyene, Michael S. Olsen, Dan Makumbi, Kiplagat Oliver, Biswanath Das, Jumbo M. Bright, Stephen Mugo, Jose Crossa, Amsal Tarekegne, Boddupalli M. Prasanna, Manje Gowda

Theoretical and Applied Genetics; August 2019, Volume 132, Issue 8, pp 2381–2399

Key message

Analysis of the genetic architecture of MCMV and MLN resistance in maize doubled-haploid populations revealed QTLs with major effects on chromosomes 3 and 6 that were consistent across genetic backgrounds and environments. Two major-effect QTLs, qMCMV3-108/qMLN3-108 and qMCMV6-17/qMLN6-17, were identified as conferring resistance to both MCMV and MLN.

Abstract

Maize lethal necrosis (MLN) is a serious threat to the food security of maize-growing smallholders in sub-Saharan Africa. The ability of the maize chlorotic mottle virus (MCMV) to interact with other members of the Potyviridae causes severe yield losses in the form of MLN. The objective of the present study was to gain insights and validate the genetic architecture of resistance to MCMV and MLN in maize. We applied linkage mapping to three doubled-haploid populations and a genome-wide association study (GWAS) on 380 diverse maize lines. For all the populations, phenotypic variation for MCMV and MLN was significant, and heritability was moderate to high. Linkage mapping revealed 13 quantitative trait loci (QTLs) for MCMV resistance and 12 QTLs conferring MLN resistance. One major-effect QTL, qMCMV3-108/qMLN3-108, was consistent across populations for both MCMV and MLN resistance. Joint linkage association mapping (JLAM) revealed 18 and 21 main-effect QTLs for MCMV and MLN resistance, respectively. Another major-effect QTL, qMCMV6-17/qMLN6-17, was detected for both MCMV and MLN resistance. The GWAS revealed a total of 54 SNPs (MCMV-13 and MLN-41) significantly associated (P ≤ 5.60 × 10−05) with MCMV and MLN resistance. Most of the GWAS-identified SNPs were within or adjacent to the QTLs detected through linkage mapping. The prediction accuracy for within populations as well as the combined populations is promising; however, the accuracy was low across populations. Overall, MCMV resistance is controlled by a few major and many minor-effect loci and seems more complex than the genetic architecture for MLN resistance.

 

See https://link.springer.com/article/10.1007/s00122-019-03360-x

 

Figure 3: Manhattan plot and Q–Q plots for the GWAS of MCMV and MLN for disease severity and the AUDPC value in the IMAS association mapping panel. The dashed horizontal line in Manhattan plots depicts the signifcance threshold (P=5.8×10−5). The X-axis indicates the SNP location along the 10 chromosomes, separated by diferent colors; Y-axis is the −log10 (P observed) for each analysis. Q–Q plots depicts infation of observed versus expected −log10 (P values) plots for each trait.

Back      Print      View: 339

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD