Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  3
 Total visitors :  4438078

Genetic mapping and development of molecular markers for a candidate gene locus controlling rind color in watermelon
Thursday, 2019/10/10 | 08:18:54

Bingbing Li, Shengjie Zhao, Junling Dou, Aslam Ali, Haileslassie Gebremeskel, Lei Gao, Nan He, Xuqiang Lu, Wenge Liu

Theoretical and Applied Genetics, October 2019, Volume 132, Issue 10, pp 2741–2753

Key message

ClCG08G017810 (ClCGMenG) encoding a 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein is associated with formation of dark green versus light green rind color in watermelon.


Rind color is an important agronomic trait in watermelon [Citrullus lanatus (Thunb.) Matsum. and Nakai], but the underlying molecular mechanism for this trait is not fully known. In the present study, we identified a single locus on chromosome 8 accounting for watermelon rind color (dark green vs. light green). Genetic analysis of F1, F2, and BC1 populations derived from two parental lines (9904 with dark green rind and Handel with light green rind) revealed that the watermelon rind color (dark green vs. light green) is controlled by a single locus, and dark green is dominant to light green rind. Initial mapping revealed a region of interest spanning 2.07 Mb on chromosome 8. Genetic mapping with CAPS and SNP markers narrowed down the candidate region to 31.4 kb. Gene annotation of the corresponding region in the reference genome revealed the ClCG08G017810 gene sequence encoding the 2-phytyl-1,4-beta-naphthoquinone methyltransferase protein. The sequence alignment of the candidate gene with the two parental lines suggested a nonsynonymous SNP mutation in the coding region of ClCG08G017810, converting an arginine (R) to glycine (G). The SNP might be associated with rind color of 103 watermelon germplasm lines investigated in this study. The qRT-PCR analysis revealed higher expression of ClCG08G017810 in dark green rind than in light green rind. Therefore, ClCG08G017810 is a candidate gene associated with watermelon rind color. The present study facilitates marker-assisted selection useful for the development of cultivars with desirable rind color.


See https://link.springer.com/article/10.1007/s00122-019-03384-3

Back      Print      View: 90

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD