Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  8
 Total visitors :  4554092

Investigating The Molecular Functions of The Os-Sc106 Spliceosomal Protein Via CRISPR/Cas9 System
Sunday, 2019/12/15 | 07:18:55

Abdulrahman Alhabsi

Thesis.pdf – University Library Nov. 2019. King Abdullah University of Science and Technology (KAUST)

Abstract

Plants employ sophisticated molecular machineries to fine-tune their responses to growth, developmental, and stress cues. Plants cellular response influences gene expression through regulating processes like transcription and splicing. To increase the genome coding potential and further regulate the expression, pre-mRNA is alternatively spliced. Serine/Arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Recent studies reported only 22 SR proteins encoded in the genome of rice (Oryza sativa), which are classified into 6 subfamilies. Oryza s. SC subfamily 106 kDa (Os-Sc106) locus is homologous to the human SR protein SFSR11 (SRp54). Os-Sc106 contains SR proteins characteristics, and was not included among the rice SR proteins. The clustered regularly interspaced short palindromic repeats (CRISPR) and its associated protein 9 (Cas9) system, an RNA-guided endonuclease complex that introduces a double-strand break (DSB) into the DNA. Innovative scientific advances in genome engineering have made CRISPR/Cas9 an excellent system to conduct functional knockout studies of genes in most biological systems including plants. In this study, I targeted the rice Os-Sc106 locus at exon1, and 3 via CRISPR/Cas9 system. Genotyping analyses revealed the recovery of Os-Sc106 mutants including complete functional knockouts such as sf11h-2, sf11h-8, and sf11h-55. Phenotypic analyses show that Os-Sc106 mutants (sf11h-2, 8, 55, and 57) are oversensitive under abiotic stress in comparison to WT plants, suggesting that Os-Sc106 locus encodes a protein that is important for regulating plant stress responses.

 
DOI 10.25781/KAUST-U0N63

 

See: https://repository.kaust.edu.sa/handle/10754/660344

Back      Print      View: 101

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD