Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7471234

New plant breeding technologies for food security
Saturday, 2019/04/06 | 07:08:04

Syed Shan-e-Ali ZaidiHervé VanderschurenMatin QaimMagdy M. MahfouzAjay KohliShahid MansoorMark Test

 

SCIENCE – PERSPECTIVE, BIOTECHNOLOGY, 29 Mar 2019:
Vol. 363, Issue 6434, pp. 1390-1391
DOI: 10.1126/science.aav6316

 

A world without hunger is possible but only if food production is sustainably increased and distributed and extreme poverty is eliminated. Globally, most of the poor and undernourished people live in rural areas of developing countries, where they depend on agriculture as a source of food, income, and employment. International data show a clear association between low agricultural productivity and high rates of undernourishment (1). Global studies have also shown that rapid reduction of extreme poverty is only possible when the incomes of smallholder farmers are increased (2). Therefore, sustained improvement in agricultural productivity is central to socioeconomic development. Here, we argue that with careful deployment and scientifically informed regulation, new plant breeding technologies (NPBTs) such as genome editing will be able to contribute substantially to global food security.

 

Previously, conventional plant breeding through cross- and self-pollination strategies played a major role in improving agricultural productivity. Moreover, the adoption of genetically modified (GM) crops by smallholder farmers has led to higher yields, lower pesticide use, poverty reduction, and improved nutrition (2). Nevertheless, so far only a few developing and emerging economies—such as China, India, Pakistan, Bangladesh, and South Africa—have embraced GM crops. Even though three decades of research show that GM crops are no more risky than conventional crops (3), many countries in Africa and Asia are hesitant to promote the use of GM crops, largely because of erroneously perceived risks and fears of losing export markets to Europe.

 

In the meantime, NPBTs have emerged. These technologies may allay fears associated with GM crops. For example, recent advances in genome editing allow the alteration of endogenous genes to improve traits in crops without transferring transgenes across species boundaries. In particular, CRISPR-Cas has emerged as one of the foremost systems with which to edit the crop genome, with rapidly increasing agricultural applications in major cereals such as rice, wheat, and maize and other food security crops such as banana and cassava (4). Because of its low cost, genome editing can also be used to improve orphan crops such as local fruits, vegetables, and staple crops that can play an important role for healthy diets. The use of foreign DNA in transgenic GM crops is the main reason for their heavy regulation. Hence, the absence of transgenes in genome-edited crops could lower the costs of the regulatory procedures and thus speed up innovation, increase competition in the seed industry, and make improved seeds more affordable for farmers in developing countries (2). The lack of technical, regulatory, and communication capacities to handle transgenic GM technologies locally has contributed to limited public acceptance and adoption (5). Scientific and sociopolitical developments are not always a continuum, which is true in developed and developing countries alike. Therefore, a renewed effort and strategy is necessary to facilitate the use and adoption of genome-edited crops and other NPBTs that have much potential to contribute to sustainable development. Learning lessons from the past, the strategy should be based on transparent communication, training of researchers and other stakeholders in the innovation system, and efficient, informed regulation (see the box).

 

See http://science.sciencemag.org/content/363/6434/1390

Back      Print      View: 329

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD