Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7454749

PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root
Sunday, 2016/02/07 | 06:03:37

Kun Yue, Priyanka Sandal, Elisabeth L. Williams, Evan Murphy, Elisabeth Stes, Natalia Nikonorova, Priya Ramakrishna, Nathan Czyzewicz, Laura Montero-Morales, Robert Kumpf, Zhefeng Lin, Brigitte van de Cotte, Mudassar Iqbal, Michiel Van Bel, Eveline Van De Slijke, Matthew R. Meyer, Astrid Gadeyne, Cyril Zipfel, Geert De Jaeger, Marc Van Montagu, Daniël Van Damme, Kris Gevaert, A. Gururaj Rao, Tom Beeckman, and Ive De Smet

 

Significance

 

Plant growth and development are mediated through a wide range of proteins, including receptor kinases and phosphatases. The receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. However, the regulation of ACR4 signaling and how it affects cell divisions remains completely unknown. We discovered that ACR4 phosphorylates the PROTEIN PHOSPHATASE 2A-3 (PP2A-3) catalytic subunit of the PP2A phosphatase holoenzyme and that PP2A dephosphorylates ACR4. These data exposed a tightly regulated point in the associated biochemical network regulating formative cell divisions in plant roots.

 

Abstract

 

In plants, the generation of new cell types and tissues depends on coordinated and oriented formative cell divisions. The plasma membrane-localized receptor kinase ARABIDOPSIS CRINKLY 4 (ACR4) is part of a mechanism controlling formative cell divisions in the Arabidopsis root. Despite its important role in plant development, very little is known about the molecular mechanism with which ACR4 is affiliated and its network of interactions. Here, we used various complementary proteomic approaches to identify ACR4-interacting protein candidates that are likely regulators of formative cell divisions and that could pave the way to unraveling the molecular basis behind ACR4-mediated signaling. We identified PROTEIN PHOSPHATASE 2A-3 (PP2A-3), a catalytic subunit of PP2A holoenzymes, as a previously unidentified regulator of formative cell divisions and as one of the first described substrates of ACR4. Our in vitro data argue for the existence of a tight posttranslational regulation in the associated biochemical network through reciprocal regulation between ACR4 and PP2A-3 at the phosphorylation level.

 

See: http://www.pnas.org/content/113/5/1447.abstract.html?etoc

PNAS February 2, 2016; vol. 113 no. 5: 1447–1452

 

Fig. 1.

Fig. 1. ACR4 interacts with PP2A-3. (A) Schematic representation of ACR4 with key domains and regions used for protein–protein interaction studies. (B) In vitro GST pull-down experiment using GST:PP2A-3 and MBP:ACR4ICD according to indicated combinations (+). PP2A-3 and ACR4ICD were detected by Western blotting with anti-GST and anti-MBP antibodies, respectively. (C) In planta YFP pull-down experiment using ACR4:YFP:HA and FLAG:PP2A-3 transiently coexpressed in tobacco leaves by Agrobacterium infiltration according to indicated combinations (+). PP2A-3 and ACR4 were detected by Western blotting with anti-FLAG and anti-HA antibodies, respectively.

Back      Print      View: 648

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD