Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7454295

Paternal outcrossing success differs among faba bean genotypes and impacts breeding of synthetic cultivars
Tuesday, 2021/08/03 | 08:03:54

Lisa Brünjes & Wolfgang Link

Theoretical and Applied Genetics August 2021; vol. 134: 2411–2427

Key message

Faba bean genotypes showed significant and marked genetic differences in their success as pollen donors to cross-fertilized seeds. The findings may improve exploitation of heterosis in synthetic cultivars.

Abstract

In partially allogamous crops such as faba bean (Vicia faba L.), increasing the share of heterosis in a synthetic cultivar can improve yield and yield stability. The share of heterosis in such synthetic cultivars is increased by higher degrees of cross-fertilization. This trait is defined as percentage of cross-fertilized seeds among all seeds and is a crucial parameter in breeders’ yield predictions. Current approaches use degree of cross-fertilization to predict inbreeding and share of heterosis, they even consider genotype-specific degrees; yet, all genotypes are assumed to contribute equally to the cross-fertilized seeds. Here, we expect faba bean genotypes to differ in their success rates as pollen donors, i.e. in paternal outcrossing success. To quantify the variation of both, the degree of cross-fertilization and the paternal outcrossing success, we assessed these parameters in inbred lines and F1 hybrids, grown in four polycrosses composed of eight genotypes each. We identified the paternal genotype of 500 to 800 seeds per genotype and polycross using SNP markers. In both traits, we found marked and significant variation among inbred lines and among F1 hybrids, as well as between inbred lines and F1. Based on our findings, we discuss how differential paternal outcrossing success influences the amount of inbreeding in synthetic cultivars. Our findings offer the potential for a better management and exploitation of heterotic yield increase in faba bean.

 

See https://link.springer.com/article/10.1007/s00122-021-03832-z

 

Figure 3: Degree of cross-fertilization of the faba bean genotypes in different sets of genotypes: a set 0 in one year (2014) and at one location (GAR), b set A in two years (2015, 2016) and at one location (DRA), and c set B in one year (2016) and at one location (DEP). For each set, different letters show significant differences among least square means (p = 0.05, multiple comparisons of means with user-defined contrasts and Bonferroni correction). Vertical lines show 95-percent confidence intervals. Least square mean values for each environment (combinations of year × location) are shown in Supplementary Table 6.

Back      Print      View: 202

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD