Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7454212

Role of DNA methylation in hybrid vigor in Arabidopsis thaliana
Thursday, 2016/10/27 | 08:45:03

Takahiro Kawanabe, Sonoko Ishikura, Naomi Miyaji, Taku Sasaki, Li Min Wu, Etsuko Itabashi, Satoko Takada, Motoki Shimizu, Takeshi Takasaki-Yasuda, Kenji Osabe, W. James Peacock, Elizabeth S. Dennis, and Ryo Fujimoto

PLANT BIOLOGY

Significance

Hybrid vigor is an important phenomenon in basic genetics and in agricultural practice, but the bases of the superior performance of the hybrid relative to its parents in biomass and seed production remain elusive. In recent years, it has been suggested that epigenetic controls on levels of gene action are involved. Using mutants of genes involved in DNA methylation, we show that RNA polymerase IV or methyltransferase I do not contribute to the generation of the heterotic phenotype but that decrease in DNA methylation 1, a nucleosome remodeller with an effect on DNA methylation level, is required to produce a full level of hybrid vigor.

Abstract

Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis in Arabidopsis thaliana, we used mutant genes that have roles in DNA methylation. Hybrids between C24 and Columbia-0 (Col) without RNA polymerase IV (Pol IV) or methyltransferase I (MET1) function did not reduce the level of biomass heterosis (as evaluated by rosette diameter). Hybrids with a mutation in decrease in dna methylation 1 (ddm1) showed a decreased heterosis level. Vegetative heterosis in the ddm1 mutant hybrid was reduced but not eliminated; a complete reduction could result if there was a change in methylation at all loci critical for generating the level of heterosis, whereas if only a proportion of the loci have methylation changes there may only be a partial reduction in heterosis.

 

See: http://www.pnas.org/content/113/43/E6704.abstract.html?etoc

PNAS October 25 2016; vol.113; no.43: E6704–E6711

 

Fig. 3.

Normal levels of heterosis were observed in pol IV mutant hybrids. (A) Ratio of rosette diameter of pol IV mutant hybrids compared with that of Col at 10 DAS. Data represent mean values ± SE obtained from more than 20 plants. (B) Northern blot analysis in pol IV mutant hybrids. Reduction of 24nt-siRNA expression (siR02 and 1003) in the nrpd1a-3 (nrpd1) and sde4-2 x nrpd1a-3 (F1) was confirmed, but accumulation of 21nt-miRNA (miR171) was not changed. (C) DNA methylation status examined by chop-PCR in the pol IV mutant. No PCR amplification in nrpd1a-3 and sde4-2 x nrpd1a-3 indicated decreased DNA methylation in the endogenous RdDM target AtSN1 (a SINE-like retroelement). The actin gene that does not contain a Hae III site was used as nonmethylated control. (D) RT-PCR analysis of AtSN1 and Solo LTR in leaves. For each locus, −RT shows control lacking reverse transcriptase. GAP (glyceraldehyde-3-phosphate dehydrogenase C subunit) was used as a control.

Back      Print      View: 566

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD