Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  4878324

TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize.
Monday, 2019/09/09 | 08:30:20

Chen QYang CJYork AMXue WDaskalska LLDeValk CAKrueger KWLawton SBSpiegelberg BGSchnell JMNeumeyer MAPerry JSPeterson ACKim BBergstrom LYang LBarber ICTian FDoebley JF.


Genetics. 2019 Sep 3. pii: genetics.302594.2019. doi: 10.1534/genetics.119.302594. [Epub ahead of print]


Recombinant inbred lines (RILs) are an important resource for mapping genes controlling complex traits in many species. While RIL populations have been developed for maize, a maize RIL population with multiple teosinte inbred lines as parents has been lacking. Here, we report a teosinte nested association mapping population (TeoNAM), derived from crossing five teosinte inbreds to the maize inbred line W22. The resulting 1257 BC1S4 RILs were genotyped with 51,544 SNPs, providing a high-density genetic map with a length of 1540 cM. On average, each RIL is 15% homozygous teosinte and 8% heterozygous. We performed joint linkage mapping (JLM) and genome-wide association study (GWAS) for 22 domestication and agronomic traits. A total of 255 QTLs from JLM were identified with many of these mapping near known genes or novel candidate genes. TeoNAM is a useful resource for QTL mapping for the discovery of novel allelic variation from teosinte. TeoNAM provides the first report that PROSTRATE GROWTH1, a rice domestication gene, is also a QTL associated with tillering in teosinte and maize. We detected multiple QTLs for flowering time and other traits for which the teosinte allele contributes to a more maize-like phenotype. Such QTL could be valuable in maize improvement.


See https://www.genetics.org/content/genetics/early/2019/09/03/genetics.119.302594.full.pdf


Figure 1: Genomic distribution of QTLs for all 22 traits in TeoNAM. The 22 agronomic (A) and domestication (B) traits are plotted in layers with different background colors, following the order of ASI, BARE, DTA, DTS, PLHT, TBN, YEPE, CULM, EB, ED, EL, GLCO, GLUM, KRN, KW, LFLN, LFWD, PROL, REPE, SHN, STAM and TILN outwards. Black dots indicate QTL peaks detected by JLM and colored bars indicate the support interval of QTLs for different traits. The heat map in the outmost layer (C) shows the number of QTL peaks using a sliding window of 10 cM and 1 cM steps, where low to high density of QTLs (0-12) are shown in light to dark red, respectively.


Back      Print      View: 177

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD