Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  4337723

The C3HC type zinc-finger protein (ZFC3) interacting with Lon/MAP1 is important for mitochondrial gene regulation, infection hypha development and longevity of Magnaporthe oryzae.
Thursday, 2020/02/06 | 08:00:13

Liu SWei YZhang SH.

BMC Microbiol. 2020 Jan 30; 20(1):23. doi: 10.1186/s12866-020-1711-4.



The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae.


We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice.


These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.


See https://bmcmicrobiol.biomedcentral.com/articles/10.1186/s12866-020-1711-4

Figure 1: The ZFC3 protein involves two principal domains and localizes to mitochondria. a Domain structures of the ZFC3 protein in M. oryzae and the conservative and evolutionary analysis of the ZFC3 like protein in representative fungi. b Expression and localization of ZFC3-RFP protein in M. oryzae. Vegetative hyphae expressing the ZFC3-RFP fusion protein was examined under microscope. Mito-Tracker green (green fluorescent dye as a membrane marker). Scale bar = 2 mm


Back      Print      View: 24

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD