Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  7456490

The carbon isotopic signature of C4 crops and its applicability in breeding for climate resilience
Wednesday, 2021/06/23 | 06:29:41

Stella EggelsSonja BlankenagelChris-Carolin Schön & Viktoriya Avramova

Theoretical and Applied Genetics June 2021; vol. 134:1663–1675

Key message

Carbon isotope discrimination is a promising trait for indirect screening for improved water use efficiency of C4 crops.

Abstract

In the context of a changing climate, drought is one of the major factors limiting plant growth and yield. Hence, breeding efforts are directed toward improving water use efficiency (WUE) as a key factor in climate resilience and sustainability of crop production. As WUE is a complex trait and its evaluation is rather resource consuming, proxy traits, which are easier to screen and reliably reflect variation in WUE, are needed. In C3 crops, a trait established to be indicative for WUE is the carbon isotopic composition (δ13C) of plant material, which reflects the preferential assimilation of the lighter carbon isotope 12C over 13C during photosynthesis. In C4 crops, carbon fixation is more complex and δ13C thus depends on many more factors than in C3 crops. Recent physiological and genetic studies indicate a correlation between δ13C and WUE also in C4 crops, as well as a colocalization of quantitative trait loci for the two traits. Moreover, significant intraspecific variation as well as a medium to high heritability of δ13C has been shown in some of the main C4 crops, such as maize, sorghum and sugarcane, indicating its potential for indirect selection and breeding. Further research on physiological, genetic and environmental components influencing δ13C is needed to support its application in improving WUE and making C4 crops resilient to climate change.

 

See: https://link.springer.com/article/10.1007/s00122-020-03761-3

 

Figure 1:

Associations between water use efficiency (WUE) and the carbon isotopic composition of C4 plant material. Negative effects are depicted by light orange arrows, positive effects are depicted by dark green arrows. The WUE of a plant (WUEplant) can be assessed by the destructive measurement of biomass in relation to the sum of water transpired by the plant. The biomass, which the plant accumulates, depends on assimilation rate and respiration, while the water transpired by the plant depends on the stomatal conductance, as well as night time transpiration and the vapor pressure deficit of the air over its lifetime. The intrinsic WUE (iWUE) is defined as the ratio of assimilation rate over stomatal conductance of a leaf section at a specific time and is by definition related to the ratio of the intercellular CO2 concentration (Ci) to the ambient CO2 concentration (Ca; Yang et al. 2016). This ratio of Ci/Ca is theoretically negatively correlated to the discrimination against the 13C isotope during assimilation (∆13C), when the influence of leakiness is stable below 0.37 as it was observed, e.g., in Henderson et al. (1992). The isotopic composition of tissues like leaves and grains (δ13C) is an indirect and integrated measure for ∆13C, when the isotopic composition of the air (δ13Cair) is accounted for. Post-photosynthetic fractionations influence δ13C further as these fractionations lead to distinct isotopic signatures of different plant compounds, which through their relative contribution to the composition of a tissue determine its δ13C

Back      Print      View: 228

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD