Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  4715814

The search for yield predictors for mature field-grown plants from juvenile pot-grown cassava (Manihot esculenta Crantz)
Tuesday, 2020/09/22 | 08:20:09

Michael O Adu, Paul A Asare , David O Yawson, Mishael A Nyarko, Ahmed Abdul Razak, Amoah K Kusi, Josiah W Tachie-Menson, Emmanuel Afutu, Dick A Andoh, Frank K Ackah, Grace C Vanderpuije, Kingsley J Taah, Elvis Asare-Bediako, Godwin Amenorpe

Plos One 2020 May 6;15(5):e0232595.  doi: 10.1371/journal.pone.0232595.


Cassava is the 6th most important source of dietary energy in the world but its root system architecture (RSA) had seldom been quantified. Ability to select superior genotypes at juvenile stages can significantly reduce the cost and time for breeding to bridge the large yield gap. This study adopted a simple approach to phenotyping RSA traits of juvenile and mature cassava plants to identify genotypic differences and the relationships between juvenile traits and harvest index of mature plants. Root classes were categorised and root and shoot traits of eight (8) juvenile pot-grown cassava genotypes, were measured at 30 and 45 days after planting (DAP). The same or related traits were measured at 7 months after planting of the same genotypes grown in the field while yield and yield components were measured in 12-months old field-grown plants. The field experiment was done in 2017 and repeated in 2018. Differences between genotypes for the measured traits were explored using analysis of variance (ANOVA) while traits in juvenile plants were correlated or regressed onto traits measured in 7- and 12-months old plants. The results show significant genotypic variations for most of the traits measured in both juvenile and 7-months old plants. In the 12-months old plants, differences between genotypes were consistent for both 2017 and 2018. Broad-sense heritability was highest for the number of commercial roots (0.87) and shoot fresh weight (0.78) and intermediate for the total number of roots (0.60), harvest index (0.58), fresh weight of roots (0.45). For all the sampling time points or growth stages, there were greater correlations between traits measured at a particular growth stage than between the same traits at different growth stages. However, some juvenile-mature plant trait relationships were significant, positive and consistent for both 2017 and 2018. For example, total root length and the total number of roots in 30 DAP, and branching density of upper nodal roots in 45 DAP, positively correlated with harvest index of 12-months old plants in both 2017 and 2018. Similarly, the diameter of nodal roots, for example, had a negative, significant correlation with fresh shoot biomass of mature plants in both 2017 and 2018. Regression of traits measured in 30 DAP explained up to 22% and 36% of the variation in HI of mature plants in 2017 and 2018, respectively. It is concluded that the simple, rapid, inexpensive phenotyping approach adopted in this study is robust for identifying genotypic variations in juvenile cassava using root system traits. Also, the results provide seminal evidence for the existence of useful relationships between traits of juvenile and mature cassava plants that can be explored to predict yield and yield components.


See https://pubmed.ncbi.nlm.nih.gov/32374747/

Figure 1: The categories given to pot-grown juvenile cassava plant (A) and field-grown 7-month old plant parts (B). A: Upper nodal roots: emerged from the topmost nodes within the top 7 cm below the soil surface; lower nodal roots: emerged from the nodes on the stem cutting with 7–13 cm below the soil surface; basal roots: emerged from the callus at the base of the stem cutting. NUNR: number of upper nodal roots; DUNR: diameter of upper nodal roots; BdUNR: branching density of upper nodal roots; NLNR: number of the lower nodal root; DLNR: diameter of lower nodal roots, BdLNR: branching density of lower nodal roots; TNR: total number of nodal roots; NBR: number of basal roots; DBR: diameter of basal roots; BdBR: branching density of basal roots. B: The tuberous roots are the indeterminate, vegetative and starchy storage root that results from the swelling of primary root crown root; the commercial or marketable roots are the premium tuberous roots with no defects; the fibrous roots are the non-storage extensions of the tuberous roots and feeder roots here designate the small, non-storage roots that may be crucial in water and nutrients acquisition from the soil. SSD: secondary stem diameter; SSL: secondary stem length; PSD: primary stem diameter; PSL: primary stem length; PSN: primary stem number; TRD: tuberous roots diameter; TRL: tuberous roots length: TRN: tuberous roots number; FeRD: feeder roots diameter; FeRL: feeder roots length; FeRN: feeder roots number; FiRL: fibrous roots length; FiRD: fibrous roots diameter; PD: peduncle diameter; PE: peduncle extent; PL: peduncle length.

Back      Print      View: 25

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD