Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  4
 Total visitors :  4328436

Two tightly linked genes coding for NAD-dependent malic enzyme and dynamin-related protein are associated with resistance to Cercospora leaf spot disease in cowpea (Vigna unguiculata (L.) Walp.)
Saturday, 2020/02/08 | 04:14:54

Titnarong Heng, Akito KagaXin Chen & Prakit Somta

Theoretical and Applied Genetics, Fe, 2020; volume 133, pages 395–407(2020)


Cercospora leaf spot (CLS) caused by Cercospora canescens is an important disease of cowpea (Vigna unguiculata). A previous study using an F2 population [CSR12906 (susceptible) × IT90K-59-120 (resistant)] identified a major QTL qCLS9.1 for resistance to CLS. In this study, we finely mapped and identified candidate genes of qCLS9.1 using an F3:4 population of 699 individuals derived from two F2:3 individuals segregating at qCLS9.1 from the original population. Fine mapping narrowed down the qCLS9.1 for the resistance to a 60.6-Kb region on cowpea chromosome 10. There were two annotated genes in the 60.6-Kb region; Vigun10g019300 coding for NAD-dependent malic enzyme 1 (NAD-ME1) and Vigun10g019400 coding for dynamin-related protein 1C (DRP1C). DNA sequence analysis revealed 12 and 2 single nucleotide polymorphisms (SNPs) in the coding sequence (CDS) and the 5′ untranslated region and TATA boxes of Vigun10g019300 and Vigun10g019400, respectively. Three SNPs caused amino acid changes in NAD-ME1 in CSR12906, N299S, S488N and S544N. Protein prediction analysis suggested that S488N of CSR12906 may have a deleterious effect on the function of NAD-ME1. Gene expression analysis demonstrated that IT90K-59-120 and CSR12906 challenged with C. canescens showed different expression in both Vigun10g019300 and Vigun10g019400. Taken together, these results indicated that Vigun10g019300 and Vigun10g019400 are the candidate genes for CLS resistance in the cowpea IT90K-59-120. Two derived cleaved amplified polymorphic sequence markers were developed to detect the resistance alleles at Vigun10g019300 and Vigun10g019400 in IT90K-59-120.


See https://link.springer.com/article/10.1007/s00122-019-03470-6

Back      Print      View: 40

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters
Designed & Powered by WEBSO CO.,LTD