Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7454378

Whole-genome sequencing enables molecular dissection and candidate gene identification of the rust resistance gene R12 in sunflower (Helianthus annuus L.)
Tuesday, 2023/05/30 | 08:18:31

G. J. MaZ. I. TalukderQ. J. SongX. H. Li & L. L. Qi

Theoretical and Applied Genetics June 2023; vol. 136, Article number: 143

Key message

We finely mapped the rust resistance gene R12 to a 0.1248-cM region, identified a potential R12 candidate gene in the XRQ reference genome, and developed three diagnostic SNP markers for R12.

Abstract

Rust is a devastating disease in sunflower that is damaging to the sunflower production globally. Identification and utilization of host-plant resistance are proven to be preferable means for disease control. The rust resistance gene R12 with broad-spectrum specificity to rust was previously localized to a 2.4 Mb region on sunflower chromosome 11. To understand the molecular mechanism of resistance, we conducted whole-genome sequencing of RHA 464 (R12 donor line) and reference genome-based fine mapping of the gene R12. Overall, the 213 markers including 186 SNPs and 27 SSRs' were identified from RHA 464 sequences and used to survey polymorphisms between the parents HA 89 and RHA 464. Saturation mapping identified 26 new markers positioned in the R12 region, and fine mapping with a large population of 2004 individuals positioned R12 at a genetic distance of 0.1248 cM flanked by SNP markers C11_150451336 and S11_189205190. One gene, HanXRQChr11g0348661, with a defense-related NB-ARC-LRR domain, was identified in the XRQr1.0 genome assembly in the R12 region; it is predicted to be a potential R12 candidate gene. Comparative analysis clearly distinguished R12 from the rust R14 gene located in the vicinity of the R12 gene on chromosome 11. Three diagnostic SNP markers, C11_147181749, C11_147312085, and C11_149085167, specific for R12 were developed in the current study, facilitating more accurate and efficient selection in sunflower rust resistance breeding. The current study provides a new genetic resource and starting point for cloning R12 in the future.

 

See https://link.springer.com/article/10.1007/s00122-023-04389-9

Figure: The positions of the rust resistance gene R14 and the purple hypocotyl color gene PHC on LG 11 of the sunflower map. a A reference map of LG 11 (Tang et al. 2003), b Map position of the R14 locus and the PHC gene on LG 11, c The position of the R12 gene on a map of LG 11 (Gong et al. 2013b). Common markers are aligned and underlined among maps a–c. Common markers are in bold and italics among maps b, and Suppl. Figure 3, a and b. The distances are given in centimorgan (cM) at the left side of the maps (Ming Zhang et al. 2016)

 

Back      Print      View: 271

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD