Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  8
 Total visitors :  7514674

Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato
Monday, 2017/12/25 | 08:18:05

Michael A. Hardigan, F. Parker E. Laimbeer, Linsey Newton, Emily Crisovan, John P. Hamilton, Brieanne Vaillancourt, Krystle Wiegert-Rininger, Joshua C. Wood, David S. Douches, Eva M. Farré, Richard E. Veilleux, and C. Robin Buell.

PNAS 2017 vol.114, no.46: E9999–E10008

Significance

Worldwide, potato is the third most important crop grown for direct human consumption, but breeders have struggled to produce new varieties that outperform those released over a century ago, as evidenced by the most widely grown North American cultivar (Russet Burbank) released in 1876. Despite its importance, potato genetic diversity at the whole-genome level remains largely unexplored. Analysis of cultivated potato and its wild relatives using modern genomics approaches can provide insight into the genomic diversity of extant germplasm, reveal historic introgressions and hybridization events, and identify genes targeted during domestication that control variance for agricultural traits, all critical information to address food security in 21st century agriculture.

Abstract

Cultivated potatoes (Solanum tuberosum L.), domesticated from wild Solanum species native to the Andes of southern Peru, possess a diverse gene pool representing more than 100 tuber-bearing relatives (Solanum section Petota). A diversity panel of wild species, landraces, and cultivars was sequenced to assess genetic variation within tuber-bearing Solanum and the impact of domestication on genome diversity and identify key loci selected for cultivation in North and South America. Sequence diversity of diploid and tetraploid S. tuberosum exceeded any crop resequencing study to date, in part due to expanded wild introgressions following polyploidy that captured alleles outside of their geographic origin. We identified 2,622 genes as under selection, with only 14–16% shared by North American and Andean cultivars, showing that a limited gene set drove early improvement of cultivated potato, while adaptation of upland (S. tuberosum group Andigena) and lowland (S. tuberosum groups Chilotanum and Tuberosum) populations targeted distinct loci. Signatures of selection were uncovered in genes controlling carbohydrate metabolism, glycoalkaloid biosynthesis, the shikimate pathway, the cell cycle, and circadian rhythm. Reduced sexual fertility that accompanied the shift to asexual reproduction in cultivars was reflected by signatures of selection in genes regulating pollen development/gametogenesis. Exploration of haplotype diversity at potato’s maturity locus (StCDF1) revealed introgression of truncated alleles from wild species, particularly S. microdontum in long-day–adapted cultivars. This study uncovers a historic role of wild Solanum species in the diversification of long-day–adapted tetraploid potatoes, showing that extant natural populations represent an essential source of untapped adaptive potential.

 

See: http://www.pnas.org/content/114/46/E9999.full

Figure 3: Wild Solanum species introgressions in cultivated potato. (A) Fraction of assessed genome sequences (5-kb windows) with introgressions from individual wild species in diploid landraces, tetraploid landraces, and cultivars. (B) Map of wild species introgressions on potato chromosome 11 for diploid landraces, tetraploid landraces, and cultivars. Color codes for species introgressions are blue, ambiguous/multiple taxa; red, S. microdontum; green, S. candolleanum; orange, Solanum sparsipilum; purple, S. leptophyes; pink, S. raphanifolium; gold, S. brevicaule; brown, S. medians; navy, S. chacoense; dark red, S. berthaultii; and light green, Solanum infundibuliforme. All 12 chromosomes, including names of accessions

Back      Print      View: 419

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD