Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  8187339

Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
Monday, 2015/01/12 | 08:31:03

Michael C. E. Niemanna, Isabel Bartrinaa, Angel Ashikovb, Henriette Webera, Ondřej Novákc, Lukáš Spíchalc, Miroslav Strnadc, Richard Strasserd, Hans Bakkerb, Thomas Schmüllinga, and Tomáš Wernera,1

 

Significance

 

Nucleotide sugars are donor substrates for the formation of glycan modifications, which are important for the function of many macromolecules such as proteins and lipids. Although most of the glycosylation reactions occur in the endoplasmic reticulum (ER) and Golgi of eukaryotic cells, nucleotide sugar activation occurs in the cytosol and specific transporters must carry these molecules across the membrane. We identified REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1) as an ER-localized transporter of UDP-GlcNAc and UDP-GalNAc in plants. In contrast to animals, nothing is known about the function of the two respective sugar residues in the plant ER. We demonstrate that ROCK1-mediated transport plays a role in the ER-associated protein quality control and loss of ROCK1 enhances cytokinin responses by suppressing the activity of cytokinin-degrading CKX proteins.

 

Abstract

 

The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.

 

See: http://www.pnas.org/content/112/1/291.abstract.html?etoc

PNAS Janurary 6, 2014; Vol.112, no.1: 291-296

 

Fig. 1. rock1 suppresses the cytokinin deficiency phenotype by repressing CKX activity. (A) Suppression of the 35S:CKX1 shoot phenotype by rock1-1 mutation in 4-wk-old plants. (B) Relative transcript abundance of A-type ARR genes in shoots of soil-grown seedlings 10 d after germination (dag) measured by quantitative real-time PCR. Data are means ± SD (n = 4; *P < 0.05, t test). (C) Effect of rock1-1 on shoot development in plants expressing 35S:CKX2 or 35S:CKX3. The shoot fresh weight of soil-grown plants was determined 17 dag (means ± SD, n ≥ 15). Significant differences to wild type were determined by t test (*P < 0.05). (D) CKX activity measured in total protein extracts. Activity is expressed relative to wild type. Values are means ± SD (n ≥ 3). Significant differences to the respective CKX overexpression line were determined by t test (*P < 0.05).

 

Back      Print      View: 1345

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD