Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  13
 Total visitors :  7512183

Inhibition of RNA polymerase II allows controlled mobilisation of retrotransposons for plant breeding.
Sunday, 2017/08/06 | 06:13:28

Thieme M, Lanciano S, Balzergue S, Daccord N, Mirouze M, Bucher E.

Genome Biol. 2017 Jul 7;18(1):134. doi: 10.1186/s13059-017-1265-4.

Abstract

BACKGROUND:

Retrotransposons play a central role in plant evolution and could be a powerful endogenous source of genetic and epigenetic variability for crop breeding. To ensure genome integrity several silencing mechanisms have evolved to repress retrotransposon mobility. Even though retrotransposons fully depend on transcriptional activity of the host RNA polymerase II (Pol II) for their mobility, it was so far unclear whether Pol II is directly involved in repressing their activity.

RESULTS:

Here we show that plants defective in Pol II activity lose DNA methylation at repeat sequences and produce more extrachromosomal retrotransposon DNA upon stress in Arabidopsis and rice. We demonstrate that combined inhibition of both DNA methylation and Pol II activity leads to a strong stress-dependent mobilization of the heat responsive ONSEN retrotransposon in Arabidopsis seedlings. The progenies of these treated plants contain up to 75 new ONSEN insertions in their genome which are stably inherited over three generations of selfing. Repeated application of heat stress in progeny plants containing increased numbers of ONSEN copies does not result in increased activation of this transposon compared to control lines. Progenies with additional ONSEN copies show a broad panel of environment-dependent phenotypic diversity.

CONCLUSIONS:

We demonstrate that Pol II acts at the root of transposon silencing. This is important because it suggests that Pol II can regulate the speed of plant evolution by fine-tuning the amplitude of transposon mobility. Our findings show that it is now possible to study induced transposon bursts in plants and unlock their use to induce epigenetic and genetic diversity for crop breeding.

 

See https://www.ncbi.nlm.nih.gov/pubmed/28687080

 

Figure 2: Simultaneous inhibition of DNA methyltransferases and Pol II reduces global CHH methylation and mimics the TE silencing deficiency of the nrpd1 background. a Genome-wide DNA methylation levels in the WT after CS and CS plus treatment with A (5 μg/ml), Z (40 μM), or a combination of A and Z (A&Z) for three sequence contexts (brown for CG, yellow for CHG and blue for CHH). b Same as a but only depicting the CHH context for clarity. c Methylome data of treated and untreated plants at an ONSEN locus located on Chr 1 (ONSEN is indicated in yellow, its LTRs in red). d Northern blot of ONSEN transcripts directly after CS, HS and HS plus treatment with A, Z or a combination of A&Z in the WT and after HS in nrpd1 plants. The black arrow indicates the ONSEN full-length transcript. Below, a Midori-stained agarose gel is shown as a loading control. e ONSEN copy number measured by qPCR directly after CS and HS treatments in WT, rdr6, dcl2/3/4 and nrpd1 seedlings directly after CS, HS and HS plus treatment with A, Z or a combination of A&Z (mean ± s.e.m, n = 3 biological repetitions, values relative to ACTIN2; *P < 0.05, **P < 0.01).

Back      Print      View: 565

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD