Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7489103

PCR-based assays for validation of single nucleotide polymorphism markers in rice and mungbean.
Wednesday, 2017/02/08 | 07:58:23

Bui TG, Hoa NT, Yen JY, Schafleitner R.

Hereditas. 2017 Jan 26;154:3. doi: 10.1186/s41065-016-0024-y. eCollection 2017.

Abstract

BACKGROUND:

Single nucleotide polymorphism (SNP) markers are the method of choice for genetic analyses including diversity and quantitative trait loci (QTL) studies. Marker validation is essential for QTL studies, but the cost and workload are considerable when large numbers of markers need to be verified. Marker systems with low development costs would be most suitable for this task.

RESULTS:

We have tested allele specific polymerase chain reaction (PCR), tetra markers and a genotyping tool based on the single strand specific nuclease CEL-I to verify randomly selected SNP markers identified previously either with a SNP array or by genotyping by sequencing in rice and mungbean, respectively. The genotyping capacity of allele-specific PCR and tetra markers was affected by the sequence context surrounding the SNP; SNPs located in repeated sequences and in GC-rich stretches could not be correctly identified. In contrast, CEL-I digestion of mixed fragments produced from test and reference DNA reliably pinpointed the correct genotypes, yet scoring of the genotypes became complicated when multiple SNPs were present in the PCR fragments. A cost analysis showed that as long the sample number remains small, CEL-I genotyping is more cost-effective than tetra markers.

CONCLUSIONS:

CEL-I genotyping performed better in terms of genotyping accuracy and costs than tetra markers. The method is highly useful for validating SNPs in small to medium size germplasm panels.

See https://www.ncbi.nlm.nih.gov/pubmed/28149257

 

Figure 1: Optimization of the incubation temperature for CEL-I treatment. The SNP tested was tetra_12. Incubation at 36 ° was found to be optimal to specifically cut at the mismatch site in position 171 bp of the 269 bp fragment, producing bands with 170 and 99 bp. The additional smaller band below around 90 bp is probably due to the sequence context around the SNP (please refer to the discussion)

Back      Print      View: 694

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD