Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  11
 Total visitors :  7452547

APIP5 functions as a transcription factor and an RNA-binding protein to modulate cell death and immunity in rice
Tuesday, 2022/09/13 | 08:11:25

Fan ZhangHong Fang , Min WangFeng HeHui TaoRuyi WangJiawei LongJiyang WangGuo-Liang WangYuese Ning

Nucleic Acids Res.; 2022 May 20; 50(9):5064-5079.  doi: 10.1093/nar/gkac316.

Abstract

Many transcription factors (TFs) in animals bind to both DNA and mRNA, regulating transcription and mRNA turnover. However, whether plant TFs function at both the transcriptional and post-transcriptional levels remains unknown. The rice (Oryza sativa) bZIP TF AVRPIZ-T-INTERACTING PROTEIN 5 (APIP5) negatively regulates programmed cell death and blast resistance and is targeted by the effector AvrPiz-t of the blast fungus Magnaporthe oryzae. We demonstrate that the nuclear localization signal of APIP5 is essential for APIP5-mediated suppression of cell death and blast resistance. APIP5 directly targets two genes that positively regulate blast resistance: the cell wall-associated kinase gene OsWAK5 and the cytochrome P450 gene CYP72A1. APIP5 inhibits OsWAK5 expression and thus limits lignin accumulation; moreover, APIP5 inhibits CYP72A1 expression and thus limits reactive oxygen species production and defense compounds accumulation. Remarkably, APIP5 acts as an RNA-binding protein to regulate mRNA turnover of the cell death- and defense-related genes OsLSD1 and OsRac1. Therefore, APIP5 plays dual roles, acting as TF to regulate gene expression in the nucleus and as an RNA-binding protein to regulate mRNA turnover in the cytoplasm, a previously unidentified regulatory mechanism of plant TFs at the transcriptional and post-transcriptional levels.

 

See https://pubmed.ncbi.nlm.nih.gov/35524572/

Figure 2.

Developmental- and pathogen-dependent nuclear accumulation of GFP-APIP5. (A) GFP-APIP5 abundance in cytosolic- and nuclei-enriched fractions from GFP-APIP5 transgenic plants at the seedling and tillering stages. S represents the seedling stage; T represents the tillering stage. Histone H3 served as a nuclear marker and HSP as a cytosolic marker. The experiment was repeated twice (biological replicates) with similar results, and the representative data from one replicate are shown. (B) GFP-APIP5nls abundance in cytosolic- and nuclei-enriched fractions from GFP-APIP5nls transgenic plants at the seedling and tillering stages. S represents the seedling stage; T represents the tillering stage. Histone H3 served as a nuclear marker and HSP as a cytosolic marker. The experiment was repeated twice (biological replicates) with similar results, and the representative data from one replicate are shown. (C) Confocal images showing the subcellular localization of GFP-APIP5 transiently expressed in the leaves of 1- and 2-month-old N. benthamiana plants. mCherry was used a whole-cell localization marker. Scale bars represent 20 μm. (D) GFP-APIP5 abundance in cytosolic- and nuclei-enriched fractions from 1- to 2-month-old N. benthamiana plants. Histone H3 served as a nuclear marker and Actin as a cytosolic marker. The experiment was repeated twice (biological replicates) with similar results, and the representative data from one replicate are shown. (E) GFP-APIP5 abundance in cytosolic- and nuclei-enriched fractions from 3-week-old GFP-APIP5 transgenic plants after inoculation with RO1-1. DAI represents day after inoculation. The experiment was repeated twice (biological replicates) with similar results, and the representative data from one replicate are shown.

 

Back      Print      View: 170

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD