Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7599089

Adaptation to high latitudes through a novel allele of Hd3a strongly promoting heading date in rice
Wednesday, 2023/05/31 | 07:48:44

Zhongmin HanXiangliang LeiHanjing ShaJia liuChuanzhong ZhangJingguo WangHongliang ZhengDetang Zou & Jun Fang

 

Theoretical and Applied Genetics June 2023; vol. 136, Article number: 141

 

Photo: ©FAO/Luc GenotKey message

 

A novel Hd3a allele strongly promoting rice heading date was identified, and it functions through florigen activation complex (FAC) and was selected during the spread of rice cultivation to high-latitude areas.

Abstract

Heading date is a critical agronomic trait for rice that determines the utilization of light and temperature conditions and thereby affects grain yield. Rice is a short day (SD) plant, and its photoperiodic information is processed by complex pathways and integrated by florigens to control flowering. In this study, we identified a novel allele for the florigen gene Heading date 3a (Hd3a), characterized by a C435G substitution in its coding region, by a genome-wide association study (GWAS) approach in a panel of 199 high-latitude japonica rice varieties. The C435G substitution induces plants to flower 10 days earlier in high-latitude area (long day condition). Then, we mutated C435 to G in Hd3a by prime editing and found the point mutation plants flowered 12 days earlier. Further molecular experiments showed the novel Hd3a protein can interact with GF14b protein and increase the expression of OsMADS14, the output gene of florigen activation complex (FAC). Molecular signatures of selection indicated that the novel Hd3a allele was selected during the process of rice cultivation expansion into high-latitude areas. Collectively, these results provide new insights into heading date regulation in high-latitude areas and advance improvements to rice adaptability to enhance crop yield.

 

See https://link.springer.com/article/10.1007/s00122-023-04391-1

Back      Print      View: 143

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD