Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  14
 Total visitors :  7456554

Heat stress transcription factor OsSPL7 plays a critical role in reactive oxygen species balance and stress responses in rice.
Friday, 2019/11/01 | 08:11:00

Hoang TVVo KTXRahman MMChoi SHJeon JS.

Plant Sci.  2019 Dec; 289:110273. doi: 10.1016/j.plantsci.2019.110273. Epub 2019 Sep 14.

Abstract

The rice spotted leaf gene, OsSPL7, induces lesion mimic (LM) spots under heat stress. Herein, we provide several lines of evidence elucidating the importance of OsSPL7 in maintaining reactive oxygen species (ROS) balance via the regulation of downstream gene expression. osspl7 knockout (spl7ko) mutants showed LM and growth retardation. Transgenic rice lines strongly overexpressing OsSPL7 (SPL7OX-S) exhibited LM accompanied by accumulated H2O2, whereas moderate expressers of OsSPL7 (SPL7OX-M) did not, and neither of them exhibited severe growth defects. Transient expression of OsSPL7-GFP in rice protoplasts indicated that OsSPL7 localizes predominantly in the nucleus. Transcriptional activity assay suggested its function as a transcriptional activator in rice. Disease evaluation showed that both SPL7OX and spl7ko enhanced resistance to Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae, the causal agents of blast and blight diseases in rice, respectively. Additionally, SPL7OX enhanced tolerance to cold stress, whereas spl7ko showed a phenotype opposite to the overexpression lines. RNA sequencing analyses identified four major groups of differentially expressed genes associated with LM, pathogen resistance, LM-pathogen resistance, and potential direct targets of OsSPL7. Collectively, our results suggest that OsSPL7 plays a critical role in plant growth and balancing ROS during biotic and abiotic stress.

 

See https://www.sciencedirect.com/science/article/pii/S0168945219308660?via%3Dihub

 

Figure 1: Production of OsSPL7 knockout and overexpression lines.

Back      Print      View: 325

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD