Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  7
 Total visitors :  7455603

Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana
Saturday, 2016/09/24 | 06:01:08

Amélie A. Kelly, Barbara Kalisch, Georg Hölzl, Sandra Schulze, Juliane Thiele, Michael Melzer, Rebecca L. Roston, Christoph Benning, and Peter Dörmann

Significance

Establishment of the progenitor of chloroplasts by the host plant cell during endosymbiosis required the integration of two sets of biological membranes, the endoplasmic reticulum and the chloroplast envelopes, participating in the synthesis of galactolipid precursors for the photosynthetic membranes. Galactolipid synthesis is unequally distributed between the two envelope membranes, necessitating lipid transfer between the envelopes and toward the thylakoids. Here we show that the N-terminal sequence of digalactosyldiacylglycerol synthase 1 is essential for the integration of the chloroplast galactolipid synthesis machinery into the host cell. This N-terminal sequence was invented at the time the endosymbiotic organelle was established, providing a basic glycosyltransferase with a neofunction essential for lipid mobilization between organelles and endomembrane systems in plants.

Abstract

Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG)] are the hallmark lipids of photosynthetic membranes. The galactolipid synthases MGD1 and DGD1 catalyze consecutive galactosyltransfer reactions but localize to the inner and outer chloroplast envelopes, respectively, necessitating intermembrane lipid transfer. Here we show that the N-terminal sequence of DGD1 (NDGD1) is required for galactolipid transfer between the envelopes. Different diglycosyllipid synthases (DGD1, DGD2, and Chloroflexus glucosyltransferase) were introduced into the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions (NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction of DGDG synthesis in the outer envelope membrane was observed only with diglycosyllipid synthase fusion proteins carrying NDGD1, indicating that NDGD1 enables galactolipid translocation between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes and mediates PA-dependent membrane fusion in vitro. These findings provide a mechanism for the sorting and selective channeling of lipid precursors between the galactolipid pools of the two envelope membranes.

 

See: http://www.pnas.org/content/113/38/10714.abstract.html?etoc

PNAS September 20 2016; vol.113; no.38: 10714–10719

 

Fig. 2. NDGD1 interactions with lipids and membranes. (A, Upper) NDGD1 binds to PA as revealed after incubation of nitrocellulose strips containing different glycerolipids with recombinant Nus (control), DGD1, or NDGD1 protein. Binding was visualized by immunodetection. (Lower) The blot shows NDGD1 binding to different amounts of PA (0.1–10 nmol). CL, cardiolipin; DAG, diacylglycerol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol. (B) NDGD1 binding to liposomes is PA-dependent. Liposomes with different proportions of PA and PC were incubated with recombinant proteins. Bound proteins were detected in polyacrylamide gels after centrifugation of liposomes. (Upper Left) Control (Nus) protein; P, pellet, S, supernatant. (Upper Right) NDGD1 binding to liposomes composed of PA and PC. Composition is expressed as percent PA. (Lower) Binding of NDGD1 (2–10 µg) to liposomes consisting of 60% PC/40% PA or 100% PC.

Back      Print      View: 501

[ Other News ]___________________________________________________
  • Auxin depletion from leaf primordia contributes to organ patterning
  • Phytochrome controls alternative splicing to mediate light responses in Arabidopsis
  • Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year
  • Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655
  • Factor analytic mixed models for the provision of grower information from national crop variety testing programs
  • Exploring the areas of applicability of whole genome prediction methods for Asian rice (Oryza sativa L.)
  • Investigation of terpene diversification across multiple sequenced plant genomes
  • Arabidopsis ribosomal proteins control vacuole trafficking and developmental programs through the regulation of lipid metabolism
  • Effect of the ahas Transgene on Biological Nitrogen Fixation and Yield of Soybean
  • Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity
  • A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome
  • High-Resolution Linkage Map and Chromosome-Scale Genome Assembly for Cassava (Manihot esculenta Crantz) from 10 Populations
  • Analysis of the Transcriptome of Banana Fruit during Ripening
  • Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1
  • Salt Tolerant Gene in Soybean Identified
  • Climate change decouples oceanic primary and export productivity and organic carbon burial
  • Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus
  • 5-Hydroxymethylcytosine Is Not Present in Appreciable Quantities in Arabidopsis DNA
  • Fine mapping of the qLOP2 and qPSR2 1 loci associated with chilling stress tolerance of wild rice seedlings
  • Natural diversity in daily rhythms of gene expression contributes to phenotypic variation

 

Designed & Powered by WEBSO CO.,LTD