Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  51
 Total visitors :  7662975

A SNP-based GWAS and functional haplotype-based GWAS of flag leaf-related traits and their influence on the yield of bread wheat (Triticum aestivum L.)
Friday, 2021/12/31 | 07:40:47

Shulin ChenFang LiuWenxue WuYong Jiang & Kehui Zhan

Theoretical and Applied Genetics December 2021; vol. 134: 3895–3909

 

Figure: Triticum aestivum L. panicles

Key message

The genetic architecture of five flag leaf morphology traits was dissected by the functional haplotype-based GWAS and a standard SNP-based GWAS in a diverse population consisting of 197 varieties.

Abstract

Flag leaf morphology (FLM) is a critical factor affecting plant architecture and grain yield in wheat. The genetic architecture of FLM traits has been extensively studied with QTL mapping in bi-parental populations, while few studies exploited genome-wide association studies (GWAS) in diverse populations. In this study, a panel of 197 elite and historical varieties from China was evaluated for five FLM traits including the length (FLL), width (FLW), ratio (FLR), area (FLA) and angle (FLANG) as well as yield in nine environments. Based on the phenotypic correlation between yield and FLL (-0.43), FLA (− 0.32) and FLW (0.11), an empirical FLM index combining the three FLM traits proved to be a good predictor for yield. Two GWAS approaches were applied to dissect the genetic architecture of five FLM traits with a Wheat660K SNP array. The functional haplotype-based GWAS revealed 6, 5 and 7 QTL for FLANG, FLL and FLR, respectively, whereas two QTL for FLW and one for FLR were identified by the standard SNP-based GWAS. Due to co-localization, there were 18 independent QTL and 10 of them were close to known ones. One co-localized QTL on chromosome 5A was associated with FLL, FLANG and FLR. Moreover, both GWAS approaches identified a novel QTL for FLR on chromosome 6B which was not reported in previous studies. This study provides new insights into the relationship between FLM and yield and broadens our understanding of the genetic architecture of FLM traits in wheat.

 

See: https://link.springer.com/article/10.1007/s00122-021-03935-7

Back      Print      View: 237

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD