Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  67
 Total visitors :  7653924

A chromosome 16 deletion conferring a high sucrose phenotype in soybean
Thursday, 2023/05/04 | 07:59:19

Alexandra OstezanElizabeth M. PrengerLuciana RossoBo ZhangRobert M. StuparTravis GlennM. A. Rouf Mian & Zenglu Li

Theoretical and Applied Genetics May 2023; vol. 136, Article number: 109

Key message

Sucrose in soybean seeds is desirable for many end-uses. Increased sucrose contents were discovered to associate with a chromosome 16 deletion resulting from fast neutron irradiation.

Abstract

Soybean is one of the most economically important crops in the United States. A primary end-use of soybean is for livestock feed. Therefore, genetic improvement of seed composition is one of the most important goals in soybean breeding programs. Sucrose is desired in animal feed due to its role as an easily digestible energy source. An elite soybean line was irradiated with fast neutrons and the seed from plants were screened for altered seed composition with near-infrared spectroscopy (NIR). One mutant line, G15FN-54, was found to have higher sucrose content (8–9%) than the parental line (5–6%). Comparative genomic hybridization (CGH) revealed three large deletions on chromosomes (Chrs) 10, 13, and 16 in the mutant, which were confirmed through whole genome sequencing (WGS). A bi-parental population derived from the mutant G15FN-54 and the cultivar Benning was developed to conduct a bulked segregant analysis (BSA) with SoySNP50K BeadChips, revealing that the deletion on Chr 16 might be responsible for the altered phenotype. The mapping result using the bi-parental population confirmed that the deletion on Chr 16 conferred elevated sucrose content and a total of 21 genes are located within this Chr 16 deletion. NIR and high-pressure liquid chromatography (HPLC) were used to confirm the stability of the phenotype across generations in the bi-parental population. The mutation will be useful to understand the genetic control of soybean seed sucrose content.

 

See https://link.springer.com/article/10.1007/s00122-023-04354-6

 

Back      Print      View: 210

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD