Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  58
 Total visitors :  7655311

Agricultural biotechnology for sustainable food security
Monday, 2023/02/13 | 08:19:00
 

Agata Tyczewska, Tomasz Twardowski, Ewa Woźniak-Gientka

Published: January 27, 2023. DOI:https://doi.org/10.1016/j.tibtech.2022.12.013

Highlights

  • - The COVID-19 pandemic and the geopolitical instability in Europe call for coordinated efforts from scientists, farmers, producers, and consumers to ensure food security.
  • - Recent progress in molecular biology and biotechnology creates hope for the future. Using genetic engineering techniques, scientists continue to improve crops, aiming to diminish the losses caused by biotic and abiotic stresses and to increase yield.
  • - There is an urgent need for communication between scientists and society based on reliable scientific knowledge, as is appropriate legislation.

 

Figure 1: Potential applications of agricultural biotechnology in food security, land conservation, waste reduction, reduced emissions, water preservation, and carbon sequestration.

Abstract

Of late, global food security has been under threat by the coronavirus disease 2019 (COVID-19) pandemic and the recent military conflict in Eastern Europe. This article presents the objectives of the Sustainable Development Goals and the European Green Deal related to achieving food security and sustainable development in European Union (EU) agriculture, taking the aforementioned threats into account. In addition, it discusses the future of plant agricultural biotechnology and artificial intelligence (AI) systems, considering their potential for reaching the goal of food security. Paradoxically, the present challenging situation may allow politicians and stakeholders of the EU to realize opportunities and use the potential of the biotechnology sector.

 

See https://www.cell.com/trends/biotechnology/fulltext/S0167-7799(22)00341-9?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0167779922003419%3Fshowall%3Dtrue

 

Back      Print      View: 156

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD