Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  66
 Total visitors :  7654264

Characterization and fine-mapping of a new Asian rice selfish genetic locus S58 in Asian–African rice hybrids
Wednesday, 2023/04/12 | 08:46:25

Yaoming FengJintao TangRuiying LiuYao-Guang LiuLetian Chen & Yongyao Xie

Theoretical and Applied Genetics April 2023; vol. 136, Article number: 87

Key message

We identified and fine-mapped S58, a selfish genetic locus from Asian rice that confers hybrid male sterility in crosses between Asian and African cultivated rice, and found a natural neutral allele in Asian rice lines that will be useful for overcoming S58-mediated hybrid sterility.

Abstract

Hybrids between Asian cultivated rice (Oryza sativa L.) and African cultivated rice (Oryza glaberrima Steud) display severe hybrid sterility (HS), hindering the utilization of strong heterosis in hybrids between these species. Several African rice selfish loci causing HS in Asian–African cultivated rice hybrids have been identified, but few such Asian rice selfish loci have been found. In this study, we identified an Asian rice selfish locus, S58, which causes hybrid male sterility (HMS) in hybrids between the Asian rice variety 02428 and the African rice line CG14. Genetic analysis confirmed that S58 causes a transmission advantage for the Asian rice S58 allele in the hybrid offspring. Genetic mapping with near-isogenic lines and DNA markers delimited S58 to 186 kb and 131 kb regions of chromosome 1 in 02428 and CG14, respectively, and revealed complex genomic structural variation over these mapped regions. Gene annotation analysis and expression profiling analyses identified eight anther-expressed candidate genes potentially responsible for S58-mediated HMS. Comparative genomic analysis determined that some Asian cultivated rice varieties harbor a 140 kb fragment deletion in this region. Hybrid compatibility analysis showed that this large deletion allele in some Asian cultivated rice varieties can serve as a natural neutral allele, S58-n, that can overcome S58-mediated interspecific HMS. Our study demonstrates that this selfish genetic element from Asian rice is important for HMS between Asian and African cultivated rice, broadening our understanding of interspecific HS. This study also provides an effective strategy for overcoming HS in future interspecific rice breeding.

 

See https://link.springer.com/article/10.1007/s00122-023-04348-4

 

Back      Print      View: 200

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD