Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  51
 Total visitors :  7662353

Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments
Thursday, 2022/01/27 | 06:23:52

Gonzalo Rizzo, Juan Pablo Monzon, Fatima A. Tenorio, Réka Howard, Kenneth G. Cassman, and Patricio Grassini

PNAS January 25, 2022 119 (4) e2113629119

Significance

After accounting for the effect of climate and improvements in agronomic management, we found the contribution of genetic technologies to increasing maize yield potential in favorable environments was substantially smaller than reported in previous studies. If genetic progress in yield potential is slowing in other environments and for other crops as well, future production gains will increasingly rely on yield gains from improved agronomic practices and/or increasing crop intensity where possible.

Abstract

Quantitative understanding of factors driving yield increases of major food crops is essential for effective prioritization of research and development. Yet previous estimates had limitations in distinguishing among contributing factors such as changing climate and new agronomic and genetic technologies. Here, we distinguished the separate contribution of these factors to yield advance using an extensive database collected from the largest irrigated maize-production domain in the world located in Nebraska (United States) during the 2005-to-2018 period. We found that 48% of the yield gain was associated with a decadal climate trend, 39% with agronomic improvements, and, by difference, only 13% with improvement in genetic yield potential. The fact that these findings were so different from most previous studies, which gave much-greater weight to genetic yield potential improvement, gives urgency to the need to reevaluate contributions to yield advances for all major food crops to help guide future investments in research and development to achieve sustainable global food security. If genetic progress in yield potential is also slowing in other environments and crops, future crop-yield gains will increasingly rely on improved agronomic practices.

See: https://www.pnas.org/content/119/4/e2113629119

 

Description: Fig. 1.

Fig. 1. Simulated climate-driven yield potential (Yc) and average farm yield (Ya) for irrigated maize in three regions in Nebraska: Lower Niobrara (Top), Tri-Basin (Middle), and Upper Big Blue (Bottom). The green shadow indicates the range of simulated Yc across nine combinations of sowing date and hybrid maturity for each year. Box plots show Ya, with boxes delimiting the 25th and 75th percentiles and lines indicating fifth and 95th percentiles; the horizontal line within each box represents the median. Also shown are fitted linear-regression models for Yc (green) and Ya (red) and their associated slopes (± SEs). Slopes of fitted regression models were statistically different from zero in all cases (P < 0.01).

Back      Print      View: 266

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD