Welcome To Website IAS

Hot news

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)


- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Website links
Vietnamese calendar
Visitors summary
 Curently online :  8
 Total visitors :  7595471

Dual roles of an Arabidopsis ESCRT component FREE1 in regulating vacuolar protein transport and autophagic degradation
Wednesday, 2015/02/11 | 10:16:40

Caiji Gao, Xiaohong Zhuang, Yong Cui, Xi Fu, Yilin He, Qiong Zhao, Yonglun Zeng, Jinbo Shen, Ming Luo, and Liwen Jiang




Macroautophagy (hereafter as autophagy) involves the delivery of cytosolic materials via autophagosome upon its fusion with the endosome and lysosome/vacuole. The endosomal sorting complex required for transport (ESCRT) machinery is responsible for the formation of intraluminal vesicles (ILVs) in multivesicular bodies (MVBs) and the sorting of ubiquitinated membrane cargos into MVB ILVs for degradation. Here, we show that, in addition to regulating MVB biogenesis, the plant-specific ESCRT component FYVE domain protein required for endosomal sorting 1 (FREE1) also plays dual roles in vacuolar protein transport and autophagic degradation. FREE1 directly interacts with a plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 to manipulate the autophagic degradation in plants. Thus, we demonstrate multiple functions of FREE1 and a direct link between the ESCRT machinery and autophagy process in plants.




Protein turnover can be achieved via the lysosome/vacuole and the autophagic degradation pathways. Evidence has accumulated revealing that efficient autophagic degradation requires functional endosomal sorting complex required for transport (ESCRT) machinery. However, the interplay between the ESCRT machinery and the autophagy regulator remains unclear. Here, we show that FYVE domain protein required for endosomal sorting 1 (FREE1), a recently identified plant-specific ESCRT component essential for multivesicular body (MVB) biogenesis and plant growth, plays roles both in vacuolar protein transport and autophagic degradation. FREE1 also regulates vacuole biogenesis in both seeds and vegetative cells of Arabidopsis. Additionally, FREE1 interacts directly with a unique plant autophagy regulator SH3 DOMAIN-CONTAINING PROTEIN2 and associates with the PI3K complex, to regulate the autophagic degradation in plants. Thus, FREE1 plays multiple functional roles in vacuolar protein trafficking and organelle biogenesis as well as in autophagic degradation via a previously unidentified regulatory mechanism of cross-talk between the ESCRT machinery and autophagy process.


See: http://www.pnas.org/content/112/6/1886.abstract.html?etoc

PNAS February 10, 2015; vol.112; no. 6 1886-1891  


Fig. 1. FREE1 regulates the transport of vacuolar proteins to protein storage vacuoles. (A) The free1 mutant is defective in the transport of seed storage proteins. GFP-CT24 was expressed in the wild-type (WT) and free1 (+/−) heterozygous plants. The seeds of the F2 population were inspected with a fluorescence microscope. free1/GFP-CT24 produced green fluorescent seeds (arrows). (B) The GFP-CT24 is targeted to protein storage vacuoles in wild-type seed cells, whereas it is secreted to the extracellular spaces in free1 mutant cells. (Scale bars, 10 μm.) (C) The free1 mutant is defective in processing of seed storage proteins. The wild-type seeds and the selected green fluorescent seeds shown in A were subjected to protein extraction for Coomassie blue staining or immunoblot analysis with GFP and 12S globulin antibodies. Note the accumulation of precursors of storage proteins in free1 mutant seeds.


Back      Print      View: 891

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters


Designed & Powered by WEBSO CO.,LTD