Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  65
 Total visitors :  7653670

Effects of the quantitative trait locus qPss3 on inhibition of photoperiod sensitivity and resistance to stalk rot disease in maize
Thursday, 2023/06/08 | 08:16:14

Feili DuYiyuan TaoChuanyu MaMang ZhuChenyu Guo & Mingliang Xu

Theoretical and Applied Genetics June 2023; vol. 136, Article number: 126

 

Figure: Stalk Rot Diseases Including Anthracnose Top Dieback Developing in Some Fields (Jackson- Ziems t al. 2016)

Key message

We identified a quantitative trait locus, qPss3 , and fine-mapped the causal locus to a 120-kb interval in maize. This locus inhibits the photoperiod sensitivity caused by ZmCCT9 and ZmCCT10 , resulting in earlier flowering by 2 ~ 4 days without reduction in stalk-rot resistance in certain genotypes.

Abstract

Photoperiod sensitivity is a key factor affecting the adaptation of maize (Zea mays L.) to high-latitude growing areas. Although many genes associated with flowering time have been identified in maize, no gene that inhibits photoperiod sensitivity has been reported. In our previous study, we detected large differences in photoperiod sensitivity among maize inbred lines with the same photoperiod-sensitive allele at the ZmCCT10 locus. Here, we used two segregating populations with the same genetic backgrounds but different ZmCCT10 alleles to perform quantitative trait locus (QTL) analysis. We identified a unique QTL, qPss3, on chromosome 3 in the population carrying the sensitive ZmCCT10 allele. After sequential fine-mapping, we eventually delimited qPss3 to an interval of ~ 120 kb. qPss3 behaved as a dominant locus and caused earlier flowering by 2–4 days via inhibiting ZmCCT10-induced photoperiod sensitivity under long-day conditions. qPss3 also inhibited the photoperiod sensitivity induced by another flowering-related gene, ZmCCT9. For application in agriculture, an F1 hybrid heterozygous at both qPss3 and ZmCCT10 loci constitutes an optimal allele combination, showing high resistance to stalk rot without a significant delay in flowering time. Moreover, qPss3 is of great value in regulating the flowering time of tropical maize grown at high-latitude regions.

 

See https://link.springer.com/article/10.1007/s00122-023-04370-6

 

Back      Print      View: 256

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD