Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  52
 Total visitors :  7658115

Empirical comparison of genomic and phenotypic selection for resistance to Fusarium ear rot and fumonisin contamination in maize
Friday, 2022/08/26 | 06:04:54

Eric N. ButotoJason C. Brewer & James B. Holland

Theoretical and Applied Genetics August 2022; vol. 135: 2799–2816

 

Figure: Corn Fusarium ear rot symptom

Key message

GS and PS performed similarly in improving resistance to FER and FUM content. With cheaper and faster genotyping methods, GS has the potential to be more efficient than PS.

Abstract

Fusarium verticillioides is a common maize (Zea mays L.) pathogen that causes Fusarium ear rot (FER) and produces the mycotoxin fumonisin (FUM). This study empirically compared phenotypic selection (PS) and genomic selection (GS) for improving FER and FUM resistance. Three intermating generations of recurrent GS were conducted in the same time frame and from a common base population as two generations of recurrent PS. Lines sampled from each PS and GS cycle were evaluated in three North Carolina environments in 2020. We observed similar cumulative responses to GS and PS, representing decreases of about 50% of mean FER and FUM compared to the base population. The first cycle of GS was more effective than later cycles. PS and GS both achieved about 70% of predicted total gain from selection for FER, but only about 26% of predicted gains for FUM, suggesting that heritability for FUM was overestimated. We observed a 20% decrease in genetic marker variation from PS and 30% decrease from GS. Our greatest challenge was our inability to quickly obtain dense and consistent set of marker genotypes across generations of GS. Practical implementation of GS in individual small-scale breeding programs will require cheaper and faster genotyping methods, and such technological advances will present opportunities to significantly optimize selection and mating schemes for future GS efforts beyond what we were able to achieve in this study.

 

See https://link.springer.com/article/10.1007/s00122-022-04150-8

Back      Print      View: 189

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD