Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  56
 Total visitors :  7656868

Genetic mapping, transcriptomic sequencing and metabolic profiling indicated a glutathione S-transferase is responsible for the red-spot-petals in Gossypium arboreum
Tuesday, 2022/11/08 | 08:13:58

Sujun ZhangJie ChenTao JiangXiao CaiHaitao WangCunjing LiuLiyuan TangXinghe LiXiangyun Zhang & Jianhong Zhang

Theoretical and Applied Genetics ctober 2022; vol. 135: 3443–3454

Key message

A GST for red-spot-petals in Gossypium arboreum was identified as the candidate under the scope of multi-omics approaches.

Abstract

Colored petal spots are correlated with insect pollination efficiency in Gossypium species. However, molecular mechanisms concerning the formation of red spots on Gossypium arboreum flowers remain elusive. In the current study, the Shixiya1-R (SxyR, with red spots) × Shixiya1-W (SxyW, without red spots) segregating population was utilized to determine that the red-spot-petal phenotype was levered by a single dominant locus. This phenotype was expectedly related to the anthocyanin metabolites, wherein the cyanidin and delphinidin derivatives constituted the major partition. Subsequently, this dominant locus was narrowed to a 3.27 Mb range on chromosome 7 by genomic resequencing from the two parents and the two segregated progeny bulks that have spotted petals or not. Furthermore, differential expressed genes generated from the two bulks at either of three sequential flower developmental stages that spanning the spot formation were intersected with the annotated ones that allocated to the 3.27 Mb interval, which returned eight genes. A glutathione S-transferase-coding gene (Gar07G08900) out of the eight was the only one that exhibited simultaneously differential expression among all three developmental stages, and it was therefore considered to be the probable candidate. Finally, functional validation upon this candidate was achieved by the appearance of scattered petal spots with inhibited expression of Gar07G08900. In conclusion, the current report identified a key gene for the red spotted petal in G. arboreum under the scope of multi-omics approaches, such efforts and embedded molecular resources would benefit future applications underlying the flower color trait in cotton.

 

See https://link.springer.com/article/10.1007/s00122-022-04191-z

 

Back      Print      View: 160

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD