Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  59
 Total visitors :  7652838

Genetically Modified Rice Is Associated with Hunger, Health, and Climate Resilience
Tuesday, 2023/08/01 | 08:05:20

Kaori Kobayashi, Xiaohui Wang and Weiqun Wang

Foods 2023, 12(14), 2776; https://doi.org/10.3390/foods12142776

Published: 21 July 2023

Abstract

While nearly one in nine people in the world deals with hunger, one in eight has obesity, and all face the threat of climate change. The production of rice, an important cereal crop and staple food for most of the world’s population, faces challenges due to climate change, the increasing global population, and the simultaneous prevalence of hunger and obesity worldwide. These issues could be addressed at least in part by genetically modified rice. Genetic engineering has greatly developed over the century. Genetically modified rice has been approved by the ISAAA’s GM approval database as safe for human consumption. The aim behind the development of this rice is to improve the crop yield, nutritional value, and food safety of rice grains. This review article provides a summary of the research data on genetically modified rice and its potential role in improving the double burden of malnutrition, primarily through increasing nutritional quality as well as grain size and yield. It also reviews the potential health benefits of certain bioactive components generated in genetically modified rice. Furthermore, this article discusses potential solutions to these challenges, including the use of genetically modified crops and the identification of quantitative trait loci involved in grain weight and nutritional quality. Specifically, a quantitative trait locus called grain weight on chromosome 6 has been identified, which was amplified by the Kasa allele, resulting in a substantial increase in grain weight and brown grain. An overexpressing a specific gene in rice, Oryza sativa plasma membrane H+-ATPase1, was observed to improve the absorption and assimilation of ammonium in the roots, as well as enhance stomatal opening and photosynthesis rate in the leaves under light exposure. Cloning research has also enabled the identification of several underlying quantitative trait loci involved in grain weight and nutritional quality. Finally, this article discusses the increasing threats of climate change such as methane–nitrous oxide emissions and global warming, and how they may be significantly improved by genetically modified rice through modifying a water-management technique. Taken together, this comprehensive review will be of particular importance to the field of bioactive components of cereal grains and food industries trying to produce high-quality functional cereal foods through genetic engineering.

 

See https://www.mdpi.com/2304-8158/12/14/2776

 

Figure 4. The Golden Rice solution. Modified from Saini et al., 2020

 

Back      Print      View: 398

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD