Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  60
 Total visitors :  7653903

Genome-wide analysis of the metallothionein gene family in cassava reveals its role in response to physiological stress through the regulation of reactive oxygen species
Saturday, 2023/05/06 | 07:27:02

Yanyan MaMaofu XueXiaofei ZhangSongbi Chen

BMC Plant Biology; 2023 Apr 28;23(1): 227. doi: 10.1186/s12870-023-04174-2.

 

Background: Cassava (Manihot esculenta Crantz) is widely planted in tropical and several subtropical regions in which drought, high temperatures, and other abiotic stresses occur. Metallothionein (MT) is a group of conjugated proteins with small molecular weight and rich in cysteine. These proteins play a substantial role in response to physiological stress through the regulation of reactive oxygen species (ROS). However, the biological functions of MT genes in cassava are unknown.

 

Results: A total of 10 MeMT genes were identified in the cassava genome. The MeMTs were divided into 3 groups (Types 2-4) based on the contents and distribution of Cys residues. The MeMTs exhibited tissue-specific expression and located on 7 chromosomes. The MeMT promoters contain some hormones regulatory and stresses responsiveness elements. MeMTs were upregulated under hydrogen peroxide (H2O2) treatment and in respond to post-harvest physiological deterioration (PPD). The results were consistent with defense-responsive cis-acting elements in the MeMT promoters. Further, four of MeMTs were selected and silenced by using the virus-induced gene silencing (VIGS) method to evaluate their functional characterization. The results of gene-silenced cassava suggest that MeMTs are involved in oxidative stress resistance, as ROS scavengers.

 

Conclusion: We identified the 10 MeMT genes, and explore their evolutionary relationship, conserved motif, and tissue-specific expression. The expression profiles of MeMTs under three kinds of abiotic stresses (wounding, low-temperature, and H2O2) and during PPD were analyzed. The tissue-specific expression and the response to abiotic stresses revealed the role of MT in plant growth and development. Furthermore, silenced expression of MeMTs in cassava leaves decreased its tolerance to ROS, consistent with its predicted role as ROS scavengers. In summary, our results suggest an important role of MeMTs in response to physiological stress as well as species adaptation via the regulation of ROS homeostasis.

 

See https://pubmed.ncbi.nlm.nih.gov/37118665/

 

Fig. 3 Gene structure, conserved protein motifs and chromosomal distribution of MeMTs. (A) The phylogenetic tree comprising 10 MeMT genes was generated via the MEGA 7.0 program, which included the exon‒intron structures of the 10 MeMT genes. Five patterns of conserved protein motifs were depicted in different colored boxes. (B) Chromosome distribution of MeMT genes. 10 MeMT genes were mapped onto the 7 Chromosomes of cassava.

Back      Print      View: 358

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD