Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7536425

Genome-wide association analysis reveals new targets for carotenoid biofortification in maize
Wednesday, 2015/05/06 | 13:55:08

Willy B. Suwarno, Kevin V. Pixley, Natalia Palacios-Rojas, Shawn M. Kaeppler and Raman Babu 

Theoretical and Applied Genetics, May 2015, Volume 128, Issue 5, pp 851-864,

http://link.springer.com/article/10.1007/s00122-015-2475-3

 

 

Abstract

Key message                                                                           

Genome-wide association analysis in CIMMYT’s association panel revealed new favorable native genomic variations in/nearby important genes such as hydroxylases and CCD1 that have potential for carotenoid biofortification in maize.

Abstract

Genome-wide association studies (GWAS) have been used extensively to identify allelic variation for genes controlling important agronomic and nutritional traits in plants. Provitamin A (proVA) enhancing alleles of lycopene epsilon cyclase (LCYE) and β-carotene hydroxylase 1 (CRTRB1), previously identified through candidate-gene based GWAS, are currently used in CIMMYT’s maize breeding program. The objective of this study was to identify genes or genomic regions controlling variation for carotenoid concentrations in grain for CIMMYT’s carotenoid association mapping panel of 380 inbred maize lines, using high-density genome-wide platforms with ~476,000 SNP markers. Population structure effects were minimized by adjustments using principal components and kinship matrix with mixed models. Genome-wide linkage disequilibrium (LD) analysis indicated faster LD decay (3.9 kb; r 2 = 0.1) than commonly reported for temperate germplasm, and therefore the possibility of achieving higher mapping resolution with our mostly tropical diversity panel. GWAS for various carotenoids identified CRTRB1, LCYE and other key genes or genomic regions that govern rate-critical steps in the upstream pathway, such as DXS1, GGPS1, and GGPS2 that are known to play important roles in the accumulation of precursor isoprenoids as well as downstream genes HYD5, CCD1, and ZEP1, which are involved in hydroxylation and carotenoid degradation. SNPs at or near all of these regions were identified and may be useful target regions for carotenoid biofortification breeding efforts in maize; for example a genomic region on chromosome 2 explained ~16 % of the phenotypic variance for β-carotene independently of CRTRB1, and a variant of CCD1 that resulted in reduced β-cryptoxanthin degradation was found in lines that have previously been observed to have low proVA degradation rates.

 

Fig. 2  GWAS manhattan plots using the mixed linear (G+Q+K) model and the 55 K + GBS combined genotype data. QPM quality protein maize (binary phenotype), ZEA zeaxanthin, L:Z lutein:zeaxanthin ratio, BCX β-cryptoxanthin, BC1 β-carotene, BC2 β-carotene with the S10_135911532 marker as an additional covariate in the model. All carotenoids’ phenotypic values (y) were transformed to log10(y + 1) prior to analyses

 

Back      Print      View: 771

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD