Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  11
 Total visitors :  7730420

Genome-wide association studies identify OsWRKY53 as a key regulator of salt tolerance in rice
Sunday, 2023/12/31 | 08:17:22

Jun YuChengsong ZhuWei XuanHongzhou AnYunlu TianBaoxiang WangWenchao ChiGaoming ChenYuwei GeJin LiZhaoyang DaiYan LiuZhiguang SunDayong XuChunming WangJianmin Wan

Nat Commun.; 2023 Jun 15; 14(1):3550. doi: 10.1038/s41467-023-39167-0.

Abstract

Salinity stress progressively reduces plant growth and productivity, while plant has developed complex signaling pathways to confront salt stress. However, only a few genetic variants have been identified to mediate salt tolerance in the major crop rice, and the molecular mechanism remains poorly understood. Here, we identify ten candidate genes associated with salt-tolerance (ST) traits by performing a genome-wide association analysis in rice landraces. We characterize two ST-related genes, encoding transcriptional factor OsWRKY53 and Mitogen-activated protein Kinase Kinase OsMKK10.2, that mediate root Na+ flux and Na+ homeostasis. We further find that OsWRKY53 acts as a negative modulator regulating expression of OsMKK10.2 in promoting ion homeostasis. Furthermore, OsWRKY53 trans-represses OsHKT1;5 (high-affinity K+ transporter 1;5), encoding a sodium transport protein in roots. We show that the OsWRKY53-OsMKK10.2 and OsWRKY53-OsHKT1;5 module coordinate defenses against ionic stress. The results shed light on the regulatory mechanisms underlying plant salt tolerance.

 

See https://pubmed.ncbi.nlm.nih.gov/37321989/

 

Fig. 1 GWAS for the eight salt-tolerance traits.

A Salt response of representative rice varieties in the GWAS.  and + represented control and 140 mM NaCl treatment, respectively. B Frequency distribution of water content under salt treated. Arrows represented control accessions, and Nona Bokra was tolerant to salt stress and Koshihikari was a salt sensitive variety. C Frequency distribution of shoot Na+ content under salt treated. D Population structure. The colored subsections within each vertical bar indicated membership coefficient (Q) of the accession to different clusters. E Neighbor-joining clustering of landraces based on genetic distance. The scale bar showed substitutions per site. The colors of the bar and the tree branch indicated the five groups identified through the STRUCTURE program. F Principal components analysis for the 268 rice varieties based on whole-genome sequence data. PC1, PC2, and PC3 indicated eigenvectors of top principal components 1, 2 and 3, respectively. G Overview of MLM with OsWRKY53 highlighted in red. Scale: −log10 of P value of markers. Manhattan plots for WC. H Overview of MLM with OsMKK10.2 highlighted in red. Scale: −log10 of P value of markers. Manhattan plots for SFW. Mixed linear model was used to calculate P value.

Back      Print      View: 171

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD