Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  6
 Total visitors :  7259704

Identifcation and mapping of a recessive allele, dt3, specifying semideterminate stem growth habit in soybean
Friday, 2023/12/01 | 08:14:38

Chancelor B. Clark, Dajian Zhang, Weidong Wang, Jianxin Ma.

Theoretical and Applied Genetics;  December (2023) 136:258

Key message

A locus, dt3, modulating semideterminancy in soybean, was discovered by a combination of genome-wide association studies and linkage mapping with multiple distinct biparental populations.

Abstract

Stem growth habit is a key architectural trait in many plants that contributes to plant productivity and environmental adaptation. In soybean, stem growth habit is classified as indeterminate, semideterminate, or determinate, of which semideterminacy is often considered as a counterpart of the “Green Revolution” trait in cereals that significantly increased grain yields. It has been demonstrated that semideterminacy in soybean is modulated by epistatic interaction between two loci, Dt1 on chromosome 19 and Dt2 on chromosome 18, with the latter as a negative regulator of the former. Here, we report the discovery of a third locus, Dt3, modulating soybean stem growth habit, which was delineated to a ~ 196-kb region on chromosome 10 by a combination of allelic and haplotypic analysis of the Dt1 and Dt2 loci in the USDA soybean Germplasm Collection, genome-wide association studies with three subsets of the collection, and linkage mapping with four biparental populations derived from crosses between one of two elite indeterminate cultivars and each of four semideterminate varieties possessing neither Dt2 nor dt1. These four semideterminate varieties are recessive mutants (i.e., dt3/dt3) in the Dt1/Dt1;dt2/dt2 background. As the semideterminacy modulated by the Dt2 allele has unfavorable pleotropic effects such as sensitivity to drought stress, dt3 may be an ideal alternative for use to develop semideterminate cultivars that are more resilient to such an environmental stress. This study enhances our understanding of the genetic factors underlying semideterminacy and enables more accurate marker-assisted selection for stem growth habit in soybean breeding.

 

See https://link.springer.com/article/10.1007/s00122-023-04493-w

 

Fig.4: Genetic and physical maps of the Dt3 region. a Genetic map of the Dt3 region constructed based on linkage analysis. InDel markers are listed on the left side and the genetic distance (centimorgan, cM) between adjacent markers are shown on the right side of the map. b Physical positions of the molecular markers on chromosome 10 according to the soybean reference genome (Wm82.a2)

 

Back      Print      View: 135

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD