Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  61
 Total visitors :  7661095

Identification and analysis of oil candidate genes reveals the molecular basis of cottonseed oil accumulation in Gossypium hirsutum L.
Monday, 2022/03/21 | 06:50:58

Zhibin ZhangJuwu GongZhen ZhangWankui GongJunwen LiYuzhen ShiAiying LiuQun GeJingtao PanSenmiao FanXiaoying DengShaoqi LiQuanjia ChenYoulu Yuan & Haihong Shang

Theoretical and Applied Genetics February 2022; vol. 135 449–460

Key message

Based on the integration of QTL-mapping and regulatory network analyses, five high-confidence stable QTL regions, six candidate genes and two microRNAs that potentially affect the cottonseed oil content were discovered.

Abstract

Cottonseed oil is increasingly becoming a promising target for edible oil with its high content of unsaturated fatty acids. In this study, a recombinant inbred line (RIL) cotton population was constructed to detect quantitative trait loci (QTLs) for the cottonseed oil content. A total of 39 QTLs were detected across eight different environments, of which five QTLs were stable. Forty-three candidate genes potentially involved in carbon metabolism, fatty acid synthesis and triacylglycerol biosynthesis processes were further obtained in the stable QTL regions. Transcriptome analysis showed that nineteen of these candidate genes expressed during  the developing cottonseed ovules and may affect the cottonseed oil content. Besides, transcription factor (TF) and microRNA (miRNA) co-regulatory network analyses based on the nineteen candidate genes suggested that six genes, two core miRNAs (ghr-miR2949b and ghr-miR2949c), and one TF GhHSL1 were considered to be closely associated with the cottonseed oil content. Moreover, four vital genes were validated by quantitative real-time PCR (qRT-PCR). These results provide insights into the oil accumulation mechanism in developing cottonseed ovules through the construction of a detailed oil accumulation model.

 

See https://link.springer.com/article/10.1007/s00122-021-03975-z

 

Figure: Gossypium hirsutum seeds.jpg – Wikimedia Commons

Back      Print      View: 168

[ Other News ]___________________________________________________
  • Genome-wide analysis of autophagy-associated genes in foxtail millet (Setaria italica L.) and characterization of the function of SiATG8a in conferring tolerance to nitrogen starvation in rice.
  • Arabidopsis small nucleolar RNA monitors the efficient pre-rRNA processing during ribosome biogenesis
  • XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves.
  • Reducing the Use of Pesticides with Site-Specific Application: The Chemical Control of Rhizoctonia solani as a Case of Study for the Management of Soil-Borne Diseases
  • OsJRL, a rice jacalin-related mannose-binding lectin gene, enhances Escherichia coli viability under high-salinity stress and improves salinity tolerance of rice.
  • Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
  • GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.).
  • Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.
  • Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants
  • No adverse effects of transgenic maize on population dynamics of endophytic Bacillus subtilis strain B916-gfp
  • Identification and expression analysis of OsLPR family revealed the potential roles of OsLPR3 and 5 in maintaining phosphate homeostasis in rice
  • Functional analysis of molecular interactions in synthetic auxin response circuits
  • Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers.
  • Inducible Expression of the De-Novo Designed Antimicrobial Peptide SP1-1 in Tomato Confers Resistance to Xanthomonas campestris pv. vesicatoria.
  • Toward combined delignification and saccharification of wheat straw by a laccase-containing designer cellulosome
  • SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa)
  • Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing.
  • Transcriptome- Assisted Label-Free Quantitative Proteomics Analysis Reveals Novel Insights into Piper nigrum -Phytophthora capsici Phytopathosystem.
  • Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants
  • Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters

 

Designed & Powered by WEBSO CO.,LTD